Control of analyses with isoparametric elements in both 2‐D and 3‐D

[1]  Javier Oliver,et al.  CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity, part II: Error estimation for h -adaptive approximations on grids of triangles and quadrilaterals , 1992 .

[4]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[5]  Philippe Marin,et al.  Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .

[6]  Frédéric Noël,et al.  A NEW APPROACH TO FREE-FORM SURFACE MESH CONTROL IN A CAD ENVIRONMENT , 1995 .

[7]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[8]  J.-P. Pelle,et al.  Error estimator and adaptivity for three-dimensional finite element analyses , 1998 .

[9]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[10]  J.-P. Pelle,et al.  Methods and Softwares for the Automation of Finite Element Analyses in 3D , 1997 .

[11]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[12]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[13]  Patrice Coorevits,et al.  Analyses éléments finis adaptatives pour les structures tridimensionnelles en élasticité , 1996 .

[14]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[15]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[16]  Pierre Beckers,et al.  3-D error estimation and mesh adaptation using improved R.E.P. method , 1998 .

[17]  Nam-Sua Lee,et al.  On the use of hierartchical models in engineering analyqiq , 1990 .

[18]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[19]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[20]  Pierre Ladevèze,et al.  Mesh optimization for problems with steep gradients , 1994 .

[21]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[22]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[23]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .

[24]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[25]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[26]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[27]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[28]  Ivo Babuška,et al.  A model study of element residual estimators for linear elliptic problems : the quality of the estimators in the interior of meshes of triangles and quadrilaterals , 1995 .