Control of analyses with isoparametric elements in both 2‐D and 3‐D
暂无分享,去创建一个
[1] Javier Oliver,et al. CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .
[2] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[3] T. Strouboulis,et al. Recent experiences with error estimation and adaptivity, part II: Error estimation for h -adaptive approximations on grids of triangles and quadrilaterals , 1992 .
[4] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[5] Philippe Marin,et al. Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .
[6] Frédéric Noël,et al. A NEW APPROACH TO FREE-FORM SURFACE MESH CONTROL IN A CAD ENVIRONMENT , 1995 .
[7] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[8] J.-P. Pelle,et al. Error estimator and adaptivity for three-dimensional finite element analyses , 1998 .
[9] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[10] J.-P. Pelle,et al. Methods and Softwares for the Automation of Finite Element Analyses in 3D , 1997 .
[11] Bijan Boroomand,et al. RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .
[12] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[13] Patrice Coorevits,et al. Analyses éléments finis adaptatives pour les structures tridimensionnelles en élasticité , 1996 .
[14] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[15] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[16] Pierre Beckers,et al. 3-D error estimation and mesh adaptation using improved R.E.P. method , 1998 .
[17] Nam-Sua Lee,et al. On the use of hierartchical models in engineering analyqiq , 1990 .
[18] T. Strouboulis,et al. Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .
[19] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[20] Pierre Ladevèze,et al. Mesh optimization for problems with steep gradients , 1994 .
[21] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[22] P. L. George,et al. Automatic Mesh Generation: Application to Finite Element Methods , 1992 .
[23] Pierre Ladevèze,et al. An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .
[24] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .
[25] O. C. Zienkiewicz,et al. Adaptivity and mesh generation , 1991 .
[26] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[27] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[28] Ivo Babuška,et al. A model study of element residual estimators for linear elliptic problems : the quality of the estimators in the interior of meshes of triangles and quadrilaterals , 1995 .