Methods for integration of transcriptomic data in genome-scale metabolic models

Several computational methods have been developed that integrate transcriptomic data with genome-scale metabolic reconstructions to infer condition-specific system-wide intracellular metabolic flux distributions. In this mini-review, we describe each of these methods published to date with categorizing them based on four different grouping criteria (requirement for multiple gene expression datasets as input, requirement for a threshold to define a gene's high and low expression, requirement for a priori assumption of an appropriate objective function, and validation of predicted fluxes directly against measured intracellular fluxes). Then, we recommend which group of methods would be more suitable from a practical perspective.

[1]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[2]  Christopher R. Myers,et al.  A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data , 2014, Comput. Biol. Chem..

[3]  Bernhard O. Palsson,et al.  GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data , 2013, Bioinform..

[4]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[5]  J. Krömer,et al.  Fluxomics - connecting 'omics analysis and phenotypes. , 2013, Environmental microbiology.

[6]  C. Maranas,et al.  Recent advances in the reconstruction of metabolic models and integration of omics data. , 2014, Current opinion in biotechnology.

[7]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[8]  Manuel Mayr,et al.  Metabolomics: Ready for the Prime Time? , 2008, Circulation. Cardiovascular genetics.

[9]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[10]  B. Oliver,et al.  Microarrays, deep sequencing and the true measure of the transcriptome , 2011, BMC Biology.

[11]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[12]  Lake-Ee Quek,et al.  13C-fluxomics: A tool for measuring metabolic phenotypes , 2009 .

[13]  Michael C. Jewett,et al.  Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p , 2009, Proceedings of the National Academy of Sciences.

[14]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[15]  J. Nielsen,et al.  It Is All about MetabolicFluxes , 2003, Journal of bacteriology.

[16]  C. Monnet,et al.  Batch kinetics of Corynebacterium glutamicum during growth on various carbon substrates: use of substrate mixtures to localise metabolic bottlenecks , 1993, Applied Microbiology and Biotechnology.

[17]  Dan S. Tawfik Messy biology and the origins of evolutionary innovations. , 2010, Nature chemical biology.

[18]  Olga G. Troyanskaya,et al.  Coordinated Concentration Changes of Transcripts and Metabolites in Saccharomyces cerevisiae , 2009, PLoS Comput. Biol..

[19]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[20]  Martijn A. Huynen,et al.  Inferring Metabolic States in Uncharacterized Environments Using Gene-Expression Measurements , 2013, PLoS Comput. Biol..

[21]  J. German,et al.  Lipidomics and lipid profiling in metabolomics , 2007, Current opinion in lipidology.

[22]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[23]  J. Nielsen,et al.  Integration of gene expression data into genome-scale metabolic models. , 2004, Metabolic engineering.

[24]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[25]  Karsten Zengler,et al.  The challenges of integrating multi-omic data sets. , 2010, Nature chemical biology.

[26]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[27]  Eytan Ruppin,et al.  iMAT: an integrative metabolic analysis tool , 2010, Bioinform..

[28]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[29]  C Reder,et al.  Metabolic control theory: a structural approach. , 1988, Journal of theoretical biology.

[30]  Bernhard Palsson,et al.  In silico biology through “omics” , 2002, Nature Biotechnology.

[31]  Marcel J. T. Reinders,et al.  Predicting Metabolic Fluxes Using Gene Expression Differences As Constraints , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[32]  Jason A. Papin,et al.  Integration of expression data in genome-scale metabolic network reconstructions , 2012, Front. Physio..

[33]  Jason A. Papin,et al.  A metabolic network approach for the identification and prioritization of antimicrobial drug targets. , 2012, Trends in microbiology.

[34]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[35]  Daniel Machado,et al.  Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism , 2014, PLoS Comput. Biol..

[36]  Marie Beurton-Aimar,et al.  Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells , 2011, BMC Systems Biology.

[37]  J. Keasling,et al.  Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. , 1997, Biotechnology and bioengineering.

[38]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Jason A. Papin,et al.  Functional integration of a metabolic network model and expression data without arbitrary thresholding , 2011, Bioinform..

[40]  K. Hellingwerf,et al.  Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Champagne,et al.  Nutritional effects on blood pressure. , 2007, Current opinion in lipidology.

[42]  J. Reed,et al.  RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations , 2012, Genome Biology.

[43]  Sara B. Collins,et al.  Temporal Expression-based Analysis of Metabolism , 2012, PLoS Comput. Biol..

[44]  Neil Swainston,et al.  Improving metabolic flux predictions using absolute gene expression data , 2012, BMC Systems Biology.

[45]  Weiwen Zhang,et al.  Integrating multiple 'omics' analysis for microbial biology: application and methodologies. , 2010, Microbiology.

[46]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[47]  V. Fromion,et al.  A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation , 2012, BMC Genomics.

[48]  Jennifer L. Reed,et al.  Shrinking the Metabolic Solution Space Using Experimental Datasets , 2012, PLoS Comput. Biol..

[49]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[50]  Nathan E Lewis,et al.  Analysis of omics data with genome-scale models of metabolism. , 2013, Molecular bioSystems.

[51]  Hyun Uk Kim,et al.  Flux-coupled genes and their use in metabolic flux analysis. , 2013, Biotechnology journal.

[52]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[53]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[54]  Miguel Rocha,et al.  13C-based metabolic flux analysis , 2012 .

[55]  A. Hoppe What mRNA Abundances Can Tell us about Metabolism , 2012, Metabolites.

[56]  Kiran Raosaheb Patil,et al.  Contribution of Network Connectivity in Determining the Relationship between Gene Expression and Metabolite Concentration Changes , 2014, PLoS Comput. Biol..

[57]  G. Stephanopoulos Metabolic fluxes and metabolic engineering. , 1999, Metabolic engineering.

[58]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.