Reproducing Kernel Hilbert Spaces Approximation Bounds

We find probability error bounds for approximations of functions $f$ in a separable reproducing kernel Hilbert space $\mathcal{H}$ with reproducing kernel $K$ on a base space $X$, firstly in terms of finite linear combinations of functions of type $K_{x_i}$ and then in terms of the projection $\pi^n_x$ on $\mathrm{Span}\{K_{x_i} \}^n_{i=1}$, for random sequences of points $x=(x_i)_i$ in the base space $X$. Previous results demonstrate that, for sequences of points $(x_i)_{i=1}^\infty$ constituting a so-called \emph{uniqueness set}, the orthogonal projections $\pi^n_x$ to $\mathrm{Span}\{K_{x_i} \}^n_{i=1}$ converge in the strong operator topology to the identity operator. The main result shows that, for a given probability measure $P$, letting $P_K$ be the measure defined by $\mathrm{d} P_K(x)=K(x,x)\mathrm{d} P(x)$, $x\in X$, and $\mathrm{H}_P$ denote the reproducing kernel Hilbert space that is the operator range of the nonexpansive operator \begin{equation*} L^2(X;P_K)\ni \lambda\mapsto L_{P,K}\lambda:=\int_X \lambda(x)K_x\mathrm{d} P(x)\in \mathcal{H}, \end{equation*} where the integral exists in the Bochner sense, under the assumption that $\mathcal{H}_P$ is dense in $\mathcal{H}$ any sequence of points sampled independently from $P$ yields a uniqueness set with probability $1$. This result improves on previous error bounds in weaker norms, such as uniform or $L^p$ norms, which yield only convergence in probability and not almost certain convergence. Two examples that show the applicability of this result to a uniform distribution on a compact interval and to the Hardy space $H^2(\mathbb{D})$ are presented as well.

[1]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[2]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[3]  Laurent Schwartz,et al.  Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (Noyaux reproduisants) , 1964 .

[4]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[5]  Tim Colonius,et al.  A general deterministic treatment of derivatives in particle methods , 2002 .

[6]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[7]  Daniel A. Williams,et al.  EXTENDING GIROSI’S APPROXIMATION ESTIMATES FOR FUNCTIONS IN SOBOLEV SPACES VIA STATISTICAL LEARNING THEORY , 2005 .

[8]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[9]  M. Kon,et al.  APPROXIMATING FUNCTIONS IN REPRODUCING KERNEL HILBERT SPACES VIA STATISTICAL LEARNING THEORY , 2005 .

[10]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[11]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[12]  J. Diestel,et al.  On vector measures , 1974 .

[13]  Ivo F. Sbalzarini,et al.  A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations , 2012, J. Comput. Phys..

[14]  H. Korezlioglu Reproducing kernels in separable Hilbert spaces. , 1968 .

[15]  V. Paulsen,et al.  An Introduction to the Theory of Reproducing Kernel Hilbert Spaces , 2016 .

[16]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[17]  F. Girosi Approximation Error Bounds That Use Vc-bounds 1 , 1995 .