Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures
暂无分享,去创建一个
Arnaud Doucet | Manuel Davy | Emmanuel Duflos | François Caron | Philippe Vanheeghe | A. Doucet | M. Davy | F. Caron | E. Duflos | P. Vanheeghe
[1] K. Fu,et al. On state estimation in switching environments , 1968 .
[2] R. Mehra. On the identification of variances and adaptive Kalman filtering , 1970 .
[3] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[4] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[5] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[6] B. Tapley,et al. Adaptive sequential estimation with unknown noise statistics , 1976 .
[7] Hiromitsu Kumamoto,et al. Random sampling approach to state estimation in switching environments , 1977, Autom..
[8] R. Maine,et al. Formulation and implementation of a practical algorithm for parameter estimation with process and measurement noise , 1980 .
[9] K. Gordon,et al. Modeling and Monitoring Biomedical Time Series , 1990 .
[10] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[11] N. Shephard. Partial non-Gaussian state space , 1994 .
[12] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[13] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[14] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[15] R. Kohn,et al. Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .
[16] A. Raftery,et al. A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability , 1997 .
[17] Patrick Duvaut,et al. Bayesian estimation of state-space models applied to deconvolution of Bernoulli - Gaussian processes , 1997, Signal Process..
[18] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[19] Purushottam W. Laud,et al. Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .
[20] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[21] A. Pievatolo,et al. Analysing the interevent time distribution to identify seismicity phases: a Bayesian nonparametric approach to the multiple‐changepoint problem , 2000 .
[22] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[23] Steven N. MacEachern,et al. Efficient MCMC Schemes for Robust Model Extensions Using Encompassing Dirichlet Process Mixture Models , 2000 .
[24] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[25] Christophe Andrieu,et al. Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[26] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[27] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[28] Arnaud Doucet,et al. Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[29] Siem Jan Koopman,et al. A simple and efficient simulation smoother for state space time series analysis , 2002 .
[30] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[31] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[32] Mario Medvedovic,et al. Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..
[33] M. Steel,et al. Semiparametric Bayesian Inference for Stochastic Frontier Models , 2004 .
[34] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[35] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[36] Fernando A. Quintana,et al. Nonparametric Bayesian data analysis , 2004 .
[37] J. L. Maryak,et al. Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1996, IEEE Transactions on Automatic Control.
[38] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[39] P. Müller,et al. A Bayesian mixture model for differential gene expression , 2005 .
[40] Arnaud Doucet,et al. Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[41] Simon J. Godsill,et al. On-line Bayesian estimation of signals in symmetric /spl alpha/-stable noise , 2006, IEEE Transactions on Signal Processing.
[42] Michael A. West,et al. Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .