Fluid-Structure Interaction in the Cardiovascular System. Numerical Analysis and Simulation. (Interaction Fluide-Structure dans le Système Cardiovasculaire. Analyse Numérique et Simulation)

Dans cette these, nous proposons et analysons des methodes numeriques partitionnees pour la simulation de phenomenes d'interaction fluide-structure dans le systeme cardiovasculaire. Nous considerons en particulier l'interaction mecanique du sang avec la paroi des grosses arteres, avec des valves cardiaques et avec le myocarde. Dans les algorithmes partitionnes, le couplage entre le fluide et la structure peut etre impose de maniere implicite, semi-implicite ou explicite. Dans la premiere partie de cette these, nous faisons l'analyse de convergence d'un algorithme de projection semi-implicite. Puis, nous proposons une nouvelle version de ce schema qui possede de meilleures proprietes de stabilite. La modification repose sur un couplage Robin-Robin resultant d'une re-interpretation de la formulation de Nitsche. Dans la seconde partie, nous nous interessons a la simulation de valves cardiaques. Nous proposons une strategie partionnee permettant la prise en compte du contact entre plusieurs structures immergees dans un fluide. Nous explorons egalement l'utilisation d'une technique de post-traitement recente, basee sur la notion de structures Lagrangiennes coherentes, pour analyser qualitativement l'hemodynamique complexe en aval des valves aortiques. Dans la derniere partie, nous proposons un modele original de valves cardiaques. Ce modele simplifie offre un compromis entre les approches “0D” classiques et les simulations complexes d'interaction fluide-structure 3D. Diverses simulations numeriques sont presentees pour illustrer l'efficacite et la robustesse de ce modele, qui permet d'envisager des simulations realistes de l'hemodynamique cardiaque, a un cout de calcul modere.

[1]  Lee Waite,et al.  A new computer model of mitral valve hemodynamics during ventricular filling. , 2004, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[2]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[3]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[4]  L. Formaggia,et al.  On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations , 2007 .

[5]  van R Raoul Loon A 3D method for modelling the fluid-structure interaction of heart valves , 2005 .

[6]  O. Pantz A frictionless contact algorithm for deformable bodies , 2011 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[9]  I. Shbeeb,et al.  The aortic valve , 1984, Diseases of the colon and rectum.

[10]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[11]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[12]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[13]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[14]  Jerrold E. Marsden,et al.  Lagrangian coherent structures in n-dimensional systems , 2007 .

[15]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[16]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[17]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[18]  Patrick Le Tallec,et al.  Numerical analysis of a linearised fluid-structure interaction problem , 2000, Numerische Mathematik.

[19]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[20]  Fotis Sotiropoulos,et al.  Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions , 2005, Annals of Biomedical Engineering.

[21]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[22]  G. Holzapfel,et al.  A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis , 2002 .

[23]  A. Klarbring Large displacement frictional contact: a continuum framework for finite element discretization , 1995 .

[24]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[25]  Alfio Quarteroni,et al.  A domain decomposition framework for fluid-structure interaction problems , 2006 .

[26]  T. H. Milroy A Manual of Physiology , 1901, Edinburgh Medical Journal.

[27]  Eun-Ok Jung,et al.  LUMPED PARAMETER MODELS OF CARDIOVASCULAR CIRCULATION IN NORMAL AND ARRHYTHMIA CASES , 2006 .

[28]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[29]  W Herzog,et al.  Modelling concentric contraction of muscle using an improved cross-bridge model. , 1999, Journal of biomechanics.

[30]  X. Luob,et al.  Effect of ventricle motion on the dynamic behaviour of chorded mitral valves , 2008 .

[31]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[32]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[33]  Philippe Pibarot,et al.  New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. , 2007, Journal of biomechanics.

[34]  W. M. Swanson,et al.  Dimensions and Geometric Relationships of the Human Aortic Value as a Function of Pressure , 1974, Circulation research.

[35]  Néjib Zemzemi Etude théorique et numérique de l’activité électrique du coeur : applications aux électrocardiogrammes , 2009 .

[36]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[37]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[38]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[39]  J. Chambers,et al.  Continuity equation and Gorlin formula compared with directly observed orifice area in native and prosthetic aortic valves. , 1992, British heart journal.

[40]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[41]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[42]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[43]  Ekkehard Ramm,et al.  THE ARTIFICIAL ADDED MASS EFFECT IN SEQUENTIAL STAGGERED FLUID-STRUCTURE INTERACTION ALGORITHMS , 2006 .

[44]  C. Peskin,et al.  Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity , 2001 .

[45]  Risto Ilmoniemi,et al.  Wiley Encyclopedia of Biomedical Engineering , 2006 .

[46]  Gianni Pedrizzetti,et al.  Three-dimensional filling flow into a model left ventricle , 2005, Journal of Fluid Mechanics.

[47]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[48]  Edward J Vigmond,et al.  Effect of bundle branch block on cardiac output: a whole heart simulation study. , 2008, Progress in biophysics and molecular biology.

[49]  P. Hansbo,et al.  Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .

[50]  D. E. Kenyon,et al.  A mathematical model of water flux through aortic tissue. , 1979, Bulletin of mathematical biology.

[51]  M. Crawford,et al.  Calculation of aortic valve area by Doppler echocardiography: a direct application of the continuity equation. , 1986, Circulation.

[52]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[53]  David A. Lane,et al.  Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition , 1996, IEEE Trans. Vis. Comput. Graph..

[54]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[55]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[56]  David Rodney Hose,et al.  Fundamental mechanics of aortic heart valve closure. , 2006, Journal of biomechanics.

[57]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[58]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[59]  Vanessa Díaz-Zuccarini,et al.  An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes , 2007, Comput. Biol. Medicine.

[60]  Annalisa Quaini,et al.  Algorithms for fluid-structure interaction problems arising in hemodynamics , 2009 .

[61]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[62]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[63]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[64]  Martin W. Heinstein,et al.  A general-purpose contact detection algorithm for nonlinear structural analysis codes , 1993 .

[65]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[66]  P. Libby,et al.  Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set, 9th Edition Expert Consult Premium Edition €“ Enhanced Online Features , 2011 .

[67]  P. Kolh,et al.  Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model , 2003 .

[68]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[69]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[70]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[71]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[72]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[73]  J. Davenport Editor , 1960 .

[74]  H. Matthies,et al.  Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction , 2002 .

[75]  Toshiaki Hisada,et al.  Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. , 2004, Biophysical journal.

[76]  Y. Fung,et al.  Pseudoelasticity of arteries and the choice of its mathematical expression. , 1979, The American journal of physiology.

[77]  Marina Vidrascu Shell based robust numerical procedures for the solution of real-life problems: conference in the honor of Michel Bernadou , 2008 .

[78]  T. Dawber,et al.  Characteristics of the Dicrotic Notch of the Arterial Pulse Wave in Coronary Heart Disease , 1973, Angiology.

[79]  Charles A. Taylor,et al.  Patient-specific modeling of cardiovascular mechanics. , 2009, Annual review of biomedical engineering.

[80]  Miguel Angel Fernández,et al.  An exact Block–Newton algorithm for solving fluid–structure interaction problems , 2003 .

[81]  R. Shandas,et al.  Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. , 1998, Circulation.

[82]  Miguel Angel Fern A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible uid , 2006 .

[83]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[84]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[85]  I. C. Howard,et al.  An approach to the simulation of fluid-structure interaction in the aortic valve. , 2006, Journal of biomechanics.

[86]  Santiago Badia,et al.  Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition , 2007, Numerische Mathematik.

[87]  K. Bathe Finite Element Procedures , 1995 .

[88]  D W Samways THE GENESIS OF THE DICROTIC PULSE WAVE , 1912, British medical journal.

[89]  G. Holzapfel,et al.  Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation , 2007 .

[90]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[91]  Vincent Martin,et al.  Projection Schemes for Fluid Flows through a Porous Interface , 2011, SIAM J. Sci. Comput..

[92]  Roland Glowinski,et al.  A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow , 2009, Appl. Math. Lett..

[93]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[94]  Peter Hansbo,et al.  Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .

[95]  Jean-Frédéric Gerbeau,et al.  AN EMBEDDED SURFACE METHOD FOR VALVE SIMULATION. APPLICATION TO STENOTIC AORTIC VALVE ESTIMATION , 2005 .

[96]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[97]  Theodosios Korakianitis,et al.  A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. , 2006, Medical engineering & physics.

[98]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[99]  Charles A. Taylor,et al.  Characterization of Coherent Structures in the Cardiovascular System , 2008, Annals of Biomedical Engineering.

[100]  R. Armentano,et al.  Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. , 1995, Circulation research.

[101]  M. Vidrascu,et al.  A partitioned Newton method for the interaction of a fluid and a 3D shell structure , 2010 .

[102]  Patrick Patrick Anderson,et al.  A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .

[103]  李幼升,et al.  Ph , 1989 .

[104]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[105]  S. Shadden,et al.  A dynamical systems approach to unsteady systems , 2006 .

[106]  Eli J. Weinberg,et al.  On the Constitutive Models for Heart Valve Leaflet Mechanics , 2005 .

[107]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[108]  Adrian Ranga,et al.  Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. , 2006, Interactive cardiovascular and thoracic surgery.

[109]  S. R. Parks,et al.  Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms , 2006, Journal of Fluid Mechanics.

[110]  P. Zunino,et al.  A Numerical Study of the Interaction of Blood Flow and Drug Release from Cardiovascular Stents , 2008 .

[111]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[112]  Miguel A. Fernández,et al.  Numerical simulation of blood flows through a porous interface , 2008 .

[113]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[114]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[115]  Marc Thiriet,et al.  Biology and mechanics of blood flows , 2008 .

[116]  E. Weinberg,et al.  A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. , 2008, Journal of biomechanics.

[117]  Tod A. Laursen,et al.  Formulation and treatment of frictional contact problems using finite elements , 1992 .

[118]  D. J. Hart Fluid-structure interaction in the aortic heart valve : a three-dimensional computational analysis , 2002 .

[119]  Y. Fung,et al.  Mechanics of the Circulation , 2011, Developments in Cardiovascular Medicine.

[120]  A. Yoganathan,et al.  Theoretical and practical differences between the Gorlin formula and the continuity equation for calculating aortic and mitral valve areas. , 1991, The American journal of cardiology.

[121]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[122]  Cornel Marius Murea,et al.  A stable time advancing scheme for solving fluid-structure interaction problem at small structural displacements , 2008 .

[123]  C S Peskin,et al.  Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. , 1982, The American journal of physiology.

[124]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[125]  P. Wriggers Finite element algorithms for contact problems , 1995 .

[126]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[127]  Yvon Maday,et al.  Nonconforming Grids for the Simulation of Fluid-Structure Interaction , 1998 .

[128]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[129]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[130]  P. M. Anderson,et al.  Vascular mechanics of the coronary artery , 2000, Zeitschrift für Kardiologie.

[131]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[132]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[133]  Brant H Maines,et al.  Lumped parameter model for computing the minimum pressure during mechanical heart valve closure. , 2005, Journal of biomechanical engineering.

[134]  Jerrold E. Marsden,et al.  Study of blood flow impact on growth of thrombi using a multiscale model , 2009 .

[135]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[136]  Takéo Takahashi Analyse des équations modélisant le mouvement des systèmes couplant des solides rigides et des fluides visqueux , 2002 .

[137]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[138]  R. S. Alexander,et al.  The Genesis of the Aortic Standing Wave , 1953, Circulation research.

[139]  L. Formaggia,et al.  Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart , 2006, Computer methods in biomechanics and biomedical engineering.

[140]  R. Lathe Phd by thesis , 1988, Nature.

[141]  P. Pibarot,et al.  Assessment of aortic valve stenosis severity: A new index based on the energy loss concept. , 2000, Circulation.

[142]  Peter J Hunter,et al.  Modeling total heart function. , 2003, Annual review of biomedical engineering.

[143]  R GORLIN,et al.  Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I. , 1951, American heart journal.

[144]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .