Fractional differential equations of Caputo-Katugampola type and numerical solutions

Abstract This paper is concerned with a numerical method for solving generalized fractional differential equation of Caputo–Katugampola derivative. A corresponding discretization technique is proposed. Numerical solutions are obtained and convergence of numerical formulae is discussed. The convergence speed arrives at O ( Δ T 1 − α ) . Numerical examples are given to test the accuracy.

[1]  Xuezhu Li,et al.  Ulam-Hyers stability of fractional Langevin equations , 2015, Appl. Math. Comput..

[2]  Udita N. Katugampola Mellin transforms of generalized fractional integrals and derivatives , 2011, Appl. Math. Comput..

[3]  David A. Edwards,et al.  Applications of fractional calculus in solving Abel-type integral equations: Surface-volume reaction problem , 2015, Comput. Math. Appl..

[4]  Hongguang Sun,et al.  Author's Personal Copy Computers and Mathematics with Applications Anomalous Diffusion Modeling by Fractal and Fractional Derivatives , 2022 .

[5]  S. Ntouyas,et al.  On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation , 2015 .

[6]  Kuei-Lin Tseng,et al.  New Hermite-Hadamard-type inequalities for convex functions (I) , 2011, Appl. Math. Lett..

[7]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[8]  JinRong Wang,et al.  On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives , 2015, Appl. Math. Lett..

[9]  Hongguang Sun,et al.  Finite difference Schemes for Variable-Order Time fractional Diffusion equation , 2012, Int. J. Bifurc. Chaos.

[10]  Vasile Lupulescu,et al.  Fractional calculus for interval-valued functions , 2015, Fuzzy Sets Syst..

[11]  J. A. Tenreiro Machado,et al.  And I say to myself: “What a fractional world!” , 2011 .

[12]  Huseyin YILDIRIMa,et al.  Ostrowski inequality for generalized fractional integral and related inequalities , 2014 .

[13]  Ricardo Almeida,et al.  An approximation formula for the Katugampola integral , 2015, 1512.03791.

[14]  D. Baleanu,et al.  Lattice fractional diffusion equation in terms of a Riesz–Caputo difference , 2015 .

[15]  Zoubir Dahmani,et al.  (k, s)-Riemann-Liouville fractional integral and applications , 2016 .

[16]  Hüseyin Yildirim,et al.  Generalized Fractional Integral Inequalities for Continuous Random Variables , 2015 .

[17]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[18]  Dumitru Baleanu,et al.  A fractional variational approach to the fractional basset-type equation , 2013 .

[19]  Ricardo Almeida,et al.  Variational Problems Involving a Caputo-Type Fractional Derivative , 2016, J. Optim. Theory Appl..

[20]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[21]  M. Emin Özdemir,et al.  Hermite-Hadamard-type inequalities via (α, m)-convexity , 2011, Comput. Math. Appl..

[22]  Dumitru Baleanu,et al.  Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations , 2017 .

[23]  Udita N. Katugampola Existence and Uniqueness results for a class of Generalized Fractional Differential Equations , 2014, 1411.5229.

[24]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[25]  Agnieszka B. Malinowska,et al.  Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.

[26]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[27]  Udita N. Katugampola,et al.  Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals ☆ , 2016, 1609.04774.

[28]  Approximate solutions to fractional subdiffusion equations , 2011, 1103.1586.