Characterization of Mononuclear Copper-Nitrogen Oxide Complexes: Models of NOx Binding to Isolated Active Sites in Copper Proteins

[1]  S H Snyder,et al.  Nitric oxide: first in a new class of neurotransmitters. , 1992, Science.

[2]  Edward I. Solomon,et al.  ELECTRONIC STRUCTURES OF ACTIVE SITES IN COPPER PROTEINS : CONTRIBUTIONS TO REACTIVITY , 1992 .

[3]  M. Dunn,et al.  Ligand effects on the blue copper site. Spectroscopic studies of an insulin-stabilized copper(II) chromophore incorporating an exogenous thiolate ligand , 1992 .

[4]  C. Ruggiero,et al.  Synthesis and structural characterization of a mononuclear copper nitrosyl complex , 1992 .

[5]  T. Traylor,et al.  Why nitric oxide , 1992 .

[6]  Akira Nakamura,et al.  A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the .mu.-.eta.2:.eta.2 peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R = isopropyl and Ph) , 1992 .

[7]  Robert B. Mellor,et al.  Reduction of nitrate and nitrite in water by immobilized enzymes , 1992, Nature.

[8]  Solomon H. Snyder,et al.  Nitric oxide, a novel neuronal messenger , 1992, Neuron.

[9]  H. Sigel,et al.  Degradation of environmental pollutants by microorganisms and their metalloenzymes , 1992 .

[10]  W. Tolman A model for the substrate adduct of copper nitrite reductase and its conversion to a novel tetrahedral copper(II) triflate complex , 1991 .

[11]  G. Parkin,et al.  Unidentate versus bidentate coordination of nitrate ligands: relevance to carbonic anhydrase activity , 1991 .

[12]  H. Sies,et al.  Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Tiedje,et al.  Evidence for an NO‐rebound, mechanism for production of N2O from nitrite by the copper‐containing nitrite reductase from Achromobacter cycloclastes , 1991, FEBS letters.

[14]  J. Godden,et al.  The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. , 1991, Science.

[15]  J. Tiedje,et al.  H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria. Evidence for an electrophilic nitrosyl during reduction of nitric oxide. , 1991, The Journal of biological chemistry.

[16]  K. Karlin,et al.  Functional modeling of copper nitrite reductases: reactions of NO2- or nitric oxide with copper(I) complexes , 1991 .

[17]  J. Drapier,et al.  Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. , 1991, The Journal of biological chemistry.

[18]  Yaning Wang,et al.  Reactions of bis(nitro)(.alpha.,.alpha.,.alpha.,.alpha.-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) with pyridine and imidazole. EPR and Moessbauer spectra and molecular structures of the mixed-ligand species , 1991 .

[19]  L. Ignarro Signal transduction mechanisms involving nitric oxide. , 1991, Biochemical pharmacology.

[20]  M. Wasielewski,et al.  Photoinduced electron transfer in the solid state : rate vs free energy dependence in fixed-distance porphyrin-acceptor molecules , 1991 .

[21]  Yaning Wang,et al.  Nitrite-bound five-coordinate low-spin iron(II) model complex for the prosthetic group of nitrite reductase with an unusually large quadrupole splitting. Synthesis, Moessbauer properties, and molecular structure of the complex (nitro)(.alpha.,.alpha.,.alpha.,.alpha.-tetrakis(o-pivalamidophenyl)porph , 1991 .

[22]  T. Meyer,et al.  Reversible interconversion between a nitrido complex of Os(VI) and an ammino complex of osmium(II) , 1990 .

[23]  D. Sellmann,et al.  Transition-metal complexes with sulfur ligands. 50. Sulfur bond cleavage in organosulfur ligands induced by PPh3/NO substitution reactions at [Ru(PPh3)2('L4')] centers. Synthesis and reactions of various (vinylthio)arenethiolate and related [Ru(NO)(Y)('L4')] (Y = PPh3, Cl) complexes. X-ray structure , 1990 .

[24]  Y. Moro-oka,et al.  Tetrahedral copper(II) complexes supported by a hindered pyrazolylborate. Formation of the thiolato complex, which closely mimics the spectroscopic characteristics of blue copper proteins , 1990 .

[25]  K. Karlin,et al.  Isolation and x-ray structure of a dinuclear copper-nitrosyl complex , 1990 .

[26]  W. Scheidt,et al.  Instability of the nitrite/iron(III) porphyrinate system , 1990 .

[27]  W. Scheidt,et al.  Use of protected binding sites for nitrite binding in iron(III) porphyrinates. Crystal structure of the bis(nitro)(.alpha.,.alpha.,.alpha.,.alpha.-tetrakis(o-pivalamidophenyl)porphinato)iron(III) anion , 1990 .

[28]  N. Revsbech,et al.  Denitrification in Soil and Sediment , 1990, Federation of European Microbiological Societies Symposium Series.

[29]  F. Bottomley Reactions of Nitrosyls , 1989 .

[30]  T. Kohzuma,et al.  Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. , 1989, Biochemical and biophysical research communications.

[31]  J. Tiedje,et al.  Evidence for a copper-nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of Achromobacter cycloclastes , 1989 .

[32]  P. Domaille,et al.  Steric effects in polypyrazolylborate ligands. Poly(3-isopropylpyrazolyl)borates: ligands of intermediate steric requirements , 1989 .

[33]  M. Beltramini,et al.  The oxidation of Octopus vulgaris hemocyanin by nitrogen oxides. , 1989, Biochemistry.

[34]  A. Zehnder Biology of anaerobic microorganisms , 1988 .

[35]  R. Moog,et al.  Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase. , 1988, Journal of Biological Chemistry.

[36]  M. Sano,et al.  Structural change in the one-electron oxidation-reduction at the copper site in nitrite reductase. Evidence from EXAFS , 1988 .

[37]  J. Etherington,et al.  The nitrogen and sulphur cycles , 1988 .

[38]  L. Hochstein,et al.  The enzymes associated with denitrification. , 1988, Annual review of microbiology.

[39]  A. Gorren,et al.  The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. , 1987, Biochimica et biophysica acta.

[40]  F. Murad,et al.  Cyclic GMP synthesis and function. , 1987, Pharmacological reviews.

[41]  A. Borovik,et al.  Absorption, emission, and photophysical properties of copper(I) pyrazole complexes and their carbonyl adducts , 1987 .

[42]  M. R. Rhodes,et al.  Electrocatalytic reduction of nitrite to nitrous oxide and ammonia based on the N-methylated, cationic iron porphyrin complex [FeIII(H2O)(TMPyP)]5+ , 1987 .

[43]  J. Thompson,et al.  Novel polypyrazolylborate ligands: coordination control through 3-substituents of the pyrazole ring , 1987 .

[44]  P. S. Braterman Reactions of coordinated ligands , 1987 .

[45]  S. Trofimenko,et al.  Pyrazole derivatives of boron , 1986 .

[46]  M. Y. Liu,et al.  Properties and electron transfer specificity of copper proteins from the denitrifier "Achromobacter cycloclastes" , 1986, Journal of bacteriology.

[47]  G. Palmer The electron paramagnetic resonance of metalloproteins. , 1985, Biochemical Society transactions.

[48]  M. Masuko,et al.  Spectroscopic studies on cobalt(II)-substituted nitrite reductase from Alcaligenes sp. , 1985 .

[49]  M. Masuko,et al.  Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein. , 1984, Journal of biochemistry.

[50]  E. Solomon,et al.  Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase. , 1983, Biochemical and biophysical research communications.

[51]  J. Rijn,et al.  SYNTHESIS AND CHARACTERIZATION OF COORDINATION COMPOUNDS OF CHELATING LIGANDS CONTAINING IMIDAZOLE GROUPS. THE CRYSTAL AND MOLECULAR STRUCTURES OF THE DINUCLEAR COPPER(I) AND COPPER(II) COMPOUNDS , 1982 .

[52]  N. Yordanov,et al.  Studies on the intermolecular interactions of metal chelate complexes. I. spectroscopic study on the interaction of copper(II) chelate complexes with NOx , 1982 .

[53]  H. Gray,et al.  Reactions of nitric oxide with tree and fungal laccase. , 1981, Biochemistry.

[54]  B. Hathaway,et al.  The structures of bis(2,2'-bipyridyl)mononitritocopper(II) tetrafluoroborate and bis(2,2'-bipyridyl)mononitritozinc(II) nitrate , 1981 .

[55]  C. Delwiche,et al.  Denitrification, Nitrification, and Atmospheric Nitrous Oxide , 1981 .

[56]  T. Kakutani,et al.  Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. , 1981, Journal of biochemistry.

[57]  T. Kakutani,et al.  A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis strain S-6. , 1981, Journal of biochemistry.

[58]  J. Ibers,et al.  Modeling coordination sites in metallobiomolecules. , 1980, Science.

[59]  D. Reinen,et al.  The structure of the low-temperature ψ-modification of Cs2PbCu(NO2)6: A powder neutron diffraction study at 160 K , 1980 .

[60]  G. Defreyn,et al.  The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and methaemocyanin of Helix pomatia. , 1979, European journal of biochemistry.

[61]  E. Solomon,et al.  Reactions and interconversion of met and dimer hemocyanin. , 1979, Biochemical and biophysical research communications.

[62]  E. Solomon,et al.  Spectroscopic studies of ligand perturbation effects on the half oxidized action site of Busycon canaliculatum hemocyanin. , 1978, Biochemical and biophysical research communications.

[63]  H. van der Deen,et al.  Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: single and double oxidation of the active site. , 1977, Biochemistry.

[64]  W. C. Hamilton,et al.  The crystal structure of K3Cu(NO2)3 , 1977 .

[65]  M. Doyle,et al.  Oxidative deamination of primary amines by copper halide nitrosyls. The formation of geminal dihalides , 1976 .

[66]  T. Marks,et al.  Structural Studies of Copper(I) Binding by Hydrotris(1-pyrazolyl)borate and Hydrotris(3,5-dimethyl-1-pyrazolyl)borate in the Solid State and in Solution , 1976 .

[67]  D. Reinen,et al.  Planar dynamic Jahn-Teller effects in nitrocomplexes: A single crystal neutron diffraction study of Cs2PbCu(NO2)6 at 293 K , 1975 .

[68]  S. Noji,et al.  Achromobacter cycloclastes nitrite reductase. The function of copper, amino acid composition, and ESR spectra. , 1975, Journal of biochemistry.

[69]  M. Brunori,et al.  The reaction of nitric oxide with Rhus vernicifera laccase , 1975, FEBS letters.

[70]  S. Takagi,et al.  Potassium barium hexanitrocuprate(II) at 295 K , 1975 .

[71]  S. Takagi,et al.  Compressed tetragonal distortion in rubidium lead hexanitrocuprate(II) at 295.deg.K , 1975 .

[72]  J. Enemark,et al.  Principles of structure, bonding, and reactivity for metal nitrosyl complexes , 1974 .

[73]  A. J. Uiterkamp,et al.  Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitric oxide- and nitrite-treated hemocyanins and tyrosinase , 1974 .

[74]  A. J. Uiterkamp,et al.  Monomer and magnetic dipole‐coupled Cu2+ EPR signals in nitrosylhemocyanin , 1972, FEBS letters.

[75]  E. C. Lingafelter,et al.  Redetermination of the crystal structure of potassium lead hexanitrocuprate(II), K2PbCu(NO2)6 , 1971 .

[76]  M. Mercer,et al.  Formation and dissociation of copper (II) nitrosyl complexes in non-aqueous solvents , 1963 .