On the Blow-Up of Solutions of a Periodic Shallow Water Equation

[1]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[2]  D. Sattinger,et al.  Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.

[3]  Peter J. Olver,et al.  Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system , 1996 .

[4]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[5]  J. Schiff Zero curvature formulations of dual hierarchies , 1996 .

[6]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[7]  A completely integrable Hamiltonian system , 1996 .

[8]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[9]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[10]  A. Constantin On the Cauchy Problem for the Periodic Camassa–Holm Equation , 1997 .

[11]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[12]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[13]  J. Escher,et al.  On the structure of a family of quasilinear equations arising in shallow water theory , 1998 .

[14]  B. Fuchssteiner Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation , 1996 .

[15]  J. Boyd Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation , 1997 .

[16]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[17]  A. Fokas On a class of physically important integrable equations , 1994 .

[18]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[19]  Fred Cooper,et al.  Solitons in the Camassa-Holm shallow water equation , 1993, patt-sol/9311006.

[20]  Harry Dym,et al.  Fourier series and integrals , 1972 .

[21]  Darryl D. Holm,et al.  On the link between umbilic geodesics and soliton solutions of nonlinear PDEs , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.