Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers

Abstract Extremely smooth (6 nm RMS roughness over 4 μm 2 ), thin (100 nm), and continuous ultrananocrystalline diamond (UNCD) films were synthesized by microwave plasma chemical vapor deposition using a 10 nm tungsten (W) interlayer between the silicon substrate and the diamond film. These UNCD films possess a high content of sp 3 -bonded carbon. The W interlayer significantly increased the initial diamond nucleation density, thereby lowering the surface roughness, eliminating interfacial voids, and allowing thinner UNCD films to be grown. This structural optimization enhances the films’ properties and enables its integration with a wide variety of substrate materials.

[1]  O. Auciello,et al.  Toward the Ultimate Tribological Interface: Surface Chemistry and Nanotribology of Ultrananocrystalline Diamond , 2005 .

[2]  J. Carlisle,et al.  Macrotexture and growth chemistry in ultrananocrystalline diamond thin films , 2005 .

[3]  James E. Butler,et al.  Diamond Chemical Vapor Deposition , 1991 .

[4]  J. Arnault HIGHLY ORIENTED DIAMOND FILMS ON HETEROSUBSTRATES: CURRENT STATE OF THE ART AND REMAINING CHALLENGES , 2003 .

[5]  Samuel Saada,et al.  Silicon substrate preparation for epitaxial diamond crystals , 2001 .

[6]  D. Guay,et al.  Very low‐roughness diamond film deposition using a surface‐wave‐ sustained plasma , 1996 .

[7]  Martin Stutzmann,et al.  Protein-modified nanocrystalline diamond thin films for biosensor applications , 2004, Nature materials.

[8]  Jingguang G. Chen,et al.  SYNTHESIS, CHARACTERIZATION AND SURFACE REACTIVITY OF TUNGSTEN CARBIDE (WC) PVD FILMS , 2004 .

[9]  W. Tong,et al.  Characterization of nanocrystalline diamond films by core‐level photoabsorption , 1996 .

[10]  Dieter M. Gruen,et al.  NANOCRYSTALLINE DIAMOND FILMS1 , 1999 .

[11]  Steven M. George,et al.  Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction , 2000 .

[12]  John A. Carlisle,et al.  Low temperature growth of ultrananocrystalline diamond , 2004 .

[13]  J. Butler,et al.  Developments in CVD-Diamond Synthesis During the Past Decade , 1998 .

[14]  Derrick C. Mancini,et al.  Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices , 2001 .

[15]  Chengyong Wang,et al.  Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3 , 2006 .

[16]  Toshiyuki Takagi,et al.  Tribological properties of partly polished diamond coatings , 2005 .

[17]  D. Dandy,et al.  Studies on nucleation process in diamond CVD: an overview of recent developments , 1995 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Jin-Seok Park,et al.  Roughness control of polycrystalline diamond films grown by bias-enhanced microwave plasma-assisted CVD , 2003 .

[20]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[21]  John Robertson,et al.  The Ultrasmoothness of Diamond-like Carbon Surfaces , 2005, Science.

[22]  F. Hong,et al.  Growth of diamond films with high surface smoothness , 2006 .

[23]  J. Dismukes,et al.  Synthetic diamond: emerging CVD science and technology , 1994 .