Unknown inputs' adaptive observer for a class of chaotic systems with uncertainties

This paper treats the adaptive synchronization problem of a class of uncertain chaotic systems with uncertainties and unknown inputs in the drive-response framework. A robust adaptive sliding mode observer-based response system is designed to synchronize a given chaotic system without the knowledge of upper bounds of uncertainties and unknown inputs. Further, the unknown inputs can be approximately recovered directly by the concept of equivalent control signal. To highlight our method, we improve the robustness of ciphering in a secure communication system. Computer simulation is also given for the purpose of illustration and verification.

[1]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[2]  M. Feki Observer-based exact synchronization of ideal and mismatched chaotic systems , 2003 .

[3]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[4]  Samuel Bowong,et al.  Controlled synchronization of chaotic systems with uncertainties via a sliding mode control design. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Saverio Mascolo,et al.  SYNCHRONIZING HIGH DIMENSIONAL CHAOTIC SYSTEMS VIA EIGENVALUE PLACEMENT WITH APPLICATION TO CELLULAR NEURAL NETWORKS , 1999 .

[6]  M. Boutayeb,et al.  Generalized state-space observers for chaotic synchronization and secure communication , 2002 .

[7]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[8]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[9]  Engin Yaz,et al.  Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization , 2000 .

[10]  Guanrong Chen,et al.  Adaptive Synchronization of Chaotic Systems via State or output Feedback Control , 2001, Int. J. Bifurc. Chaos.

[11]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[12]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[13]  Chee Pin Tan,et al.  Sliding mode observers for fault detection and isolation , 2002 .

[14]  Guanrong Chen,et al.  On area-preserving non-hyperbolic chaotic maps: A case study , 2003 .

[15]  Mao Peng-wei Synchronization of Chaotic Colpitts Circuit System with Different Orders , 2010 .

[16]  Samuel Bowong,et al.  Synchronization of uncertain chaotic systems via backstepping approach , 2004 .

[17]  Gualberto Solís-Perales,et al.  A chaos-based communication scheme via robust asymptotic feedback , 2001 .

[18]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[20]  Mark Hess,et al.  TRANSITION TO PHASE SYNCHRONIZATION OF CHAOS , 1998 .

[21]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[22]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[23]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[24]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[25]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Chen Cong Switching Manifold Approach to Chaos Synchronization , 2001 .

[27]  A. Isidori Nonlinear Control Systems , 1985 .

[28]  Er-Wei Bai,et al.  Secure communication via multiple parameter modulation in a delayed chaotic system , 2005 .

[29]  F. M. Kakmeni,et al.  Chaos control using small-amplitude damping signals of the extended Duffing equation , 2007 .

[30]  F. M. Moukam Kakmeni,et al.  A New Synchronization Principle for a Class of Lur'e Systems with Applications in Secure Communication , 2004, Int. J. Bifurc. Chaos.

[31]  Martin Hasler,et al.  Engineering chaos for encryption and broadband communication , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[33]  Jean Bragard,et al.  Control and Synchronization of Space Extended Dynamical Systems , 2001, Int. J. Bifurc. Chaos.

[34]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[35]  Tao Yang,et al.  Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[37]  J. M. Gonzalez-Miranda,et al.  Generalized synchronization in directionally coupled systems with identical individual dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[39]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[40]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[41]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[42]  E. M. Shahverdiev,et al.  Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[43]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[44]  Christopher Edwards,et al.  Sliding mode observers for detection and reconstruction of sensor faults , 2002, Autom..

[45]  R. Femat,et al.  Synchronization of chaotic systems with different order. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[47]  R. Femat,et al.  On the chaos synchronization phenomena , 1999 .

[48]  Yongguang Yu,et al.  The synchronization of linearly bidirectional coupled chaotic systems , 2004 .