Structural Lability in Stem–Loop 1 Drives a 5′ UTR–3′ UTR Interaction in Coronavirus Replication

[1]  S. Weiss,et al.  Pathogenesis of Murine Coronavirus Infection , 2008 .

[2]  D. Giedroc,et al.  A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. , 2007, RNA.

[3]  A. Pardi,et al.  Thermodynamics and kinetics for base-pair opening in the P1 duplex of the Tetrahymena group I ribozyme , 2007, Nucleic acids research.

[4]  Dipali G. Sashital,et al.  Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. , 2007, RNA.

[5]  D. Giedroc,et al.  The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical. , 2006, RNA.

[6]  D. Giedroc,et al.  Putative cis-Acting Stem-Loops in the 5′ Untranslated Region of the Severe Acute Respiratory Syndrome Coronavirus Can Substitute for Their Mouse Hepatitis Virus Counterparts , 2006, Journal of Virology.

[7]  R. Baric,et al.  Effect of Mutations in the Mouse Hepatitis Virus 3′(+)42 Protein Binding Element on RNA Replication , 2005, Journal of Virology.

[8]  Samson S. Y. Wong,et al.  Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia , 2005, Journal of Virology.

[9]  D. Brian,et al.  Stem-Loop IV in the 5′ Untranslated Region Is a cis-Acting Element in Bovine Coronavirus Defective Interfering RNA Replication , 2003, Journal of Virology.

[10]  R. Andino,et al.  Solution structure of a consensus stem-loop D RNA domain that plays important roles in regulating translation and replication in enteroviruses and rhinoviruses. , 2004, Biochemistry.

[11]  J. C. Myers,et al.  Human UP1 as a model for understanding purine recognition in the family of proteins containing the RNA recognition motif (RRM). , 2004, Journal of molecular biology.

[12]  D. Coman,et al.  Site-resolved stabilization of a DNA triple helix by magnesium ions. , 2004, Nucleic acids research.

[13]  J. Wöhnert,et al.  The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. , 2004, Structure.

[14]  S. Alonso,et al.  Sequence Motifs Involved in the Regulation of Discontinuous Coronavirus Subgenomic RNA Synthesis , 2004, Journal of Virology.

[15]  C. A. Theimer,et al.  YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA. , 2003, RNA.

[16]  A. Gorbalenya,et al.  A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae , 2003, Archives of Virology.

[17]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[18]  D. Brian,et al.  Stem-Loop III in the 5′ Untranslated Region Is a cis-Acting Element in Bovine Coronavirus Defective Interfering RNA Replication , 2003, Journal of Virology.

[19]  Christian Drosten,et al.  Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome , 2003, Science.

[20]  J. A. Comer,et al.  A novel coronavirus associated with severe acute respiratory syndrome. , 2003, The New England journal of medicine.

[21]  R. Baric,et al.  Systematic Assembly of a Full-Length Infectious cDNA of Mouse Hepatitis Virus Strain A59 , 2002, Journal of Virology.

[22]  Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae. , 2002, Biochemistry.

[23]  J. Leroy,et al.  Imino proton exchange and base-pair kinetics in RNA duplexes. , 2001, Biochemistry.

[24]  M. Lai,et al.  Heterogeneous Nuclear Ribonucleoprotein A1 Binds to the 3′-Untranslated Region and Mediates Potential 5′-3′-End Cross Talks of Mouse Hepatitis Virus RNA , 2001, Journal of Virology.

[25]  S. Evans,et al.  cis-Acting Sequences Required for Coronavirus Infectious Bronchitis Virus Defective-RNA Replication and Packaging , 2001, Journal of Virology.

[26]  B. Hogue,et al.  Host Protein Interactions with the 3′ End of Bovine Coronavirus RNA and the Requirement of the Poly(A) Tail for Coronavirus Defective Genome Replication , 2000, Journal of Virology.

[27]  R. Baric,et al.  Subgenomic Negative-Strand RNA Function during Mouse Hepatitis Virus Infection , 2000, Journal of Virology.

[28]  D. Giedroc,et al.  Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus. , 2000, RNA.

[29]  D. Giedroc,et al.  Equilibrium unfolding pathway of an H-type RNA pseudoknot which promotes programmed −1 ribosomal frameshifting1 , 1999, Journal of Molecular Biology.

[30]  D. Crothers,et al.  Decreased imino proton exchange and base-pair opening in the IHF-DNA complex measured by NMR. , 1999, Journal of molecular biology.

[31]  A. Krainer,et al.  Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. , 1999, Genes & development.

[32]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[33]  A. Sachs,et al.  Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[35]  M. Guéron,et al.  Studies of base pair kinetics by NMR measurement of proton exchange. , 1995, Methods in enzymology.

[36]  D. Brian,et al.  A cis-acting function for the coronavirus leader in defective interfering RNA replication , 1994, Journal of virology.

[37]  S. Makino,et al.  Analysis of cis-Acting Sequences Essential for Coronavirus Defective Interfering RNA Replication , 1993, Virology.

[38]  S. Weiss,et al.  The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. , 1990, Nucleic acids research.

[39]  S. Sawicki,et al.  Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis , 1990, Journal of virology.

[40]  D. Brian,et al.  Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Baric,et al.  Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Armstrong,et al.  Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. , 1983, The EMBO journal.

[43]  S. Weiss,et al.  Cell-free translation of murine coronavirus RNA , 1982, Journal of virology.

[44]  K. Wilhelmsen,et al.  The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM☆ , 1981, Virology.