An adaptive immune optimization algorithm for energy minimization problems.

Based on the immune theory of biology, a novel evolutionary algorithm, adaptive immune optimization algorithm (AIOA), is proposed. In AIOA, density regulation and immune selection is adopted to control the individual diversity and the convergence adaptively. By an application of the algorithm to the optimization of test functions, it is shown that the algorithm is a highly efficient optimization method compared with other stochastic optimization methods. The algorithm was also applied to the optimization of Lennard-Jones clusters, and the results show that the method can find the optimal structure of N</=80 with a very high efficiency. The proposed algorithm may be a good tool for fast global optimization in chemical or biological molecular simulations.

[1]  Haiyan Jiang,et al.  A random tunneling algorithm for the structural optimization problem , 2002 .

[2]  M. Moret,et al.  Stochastic molecular optimization using generalized simulated annealing , 1998, J. Comput. Chem..

[3]  David J. Evans,et al.  The Annealing Evolution Algorithm as Function Optimizer , 1995, Parallel Comput..

[4]  Jonathan Timmis,et al.  A resource limited artificial immune system for data analysis , 2001, Knowl. Based Syst..

[5]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[6]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[7]  Xueguang Shao,et al.  Optimization of Lennard-Jones atomic clusters , 2002 .

[8]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[9]  Eugene Agichtein,et al.  A note on the application of the “Boltzmann simplex”-simulated annealing algorithm to global optimizations of argon and water clusters , 1997 .

[10]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size , 1999 .

[11]  Xueguang Shao,et al.  A fast annealing evolutionary algorithm for global optimization , 2002, J. Comput. Chem..

[12]  N. K. Jerne,et al.  Idiotypic Networks and Other Preconceived Ideas , 1984, Immunological reviews.

[13]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[14]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[15]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[16]  Wayne Pullan,et al.  Energy minimization of mixed argon–xenon microclusters using a genetic algorithm , 1997 .

[17]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[18]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[19]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[20]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[21]  Song-Yop Hahn,et al.  A study on comparison of optimization performances between immune algorithm and other heuristic algorithms , 1998 .

[22]  Shyh-Jier Huang Enhancement of thermal unit commitment using immune algorithms based optimization approaches , 1999 .

[23]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[24]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[25]  Janet M. Thornton,et al.  Rebuilding flavodoxin from Cα coordinates: A test study , 1989 .

[26]  J. Chun,et al.  Shape optimization of electromagnetic devices using immune algorithm , 1997 .

[27]  Fabio Schoen,et al.  Fast Global Optimization of Difficult Lennard-Jones Clusters , 2002, Comput. Optim. Appl..

[28]  A. V. Levy,et al.  The Tunneling Algorithm for the Global Minimization of Functions , 1985 .

[29]  John Arthur Niesse,et al.  Global optimization of atomic and molecular clusters using the space‐fixed modified genetic algorithm method , 1997 .

[30]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[31]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[32]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[33]  John E. Hunt,et al.  Learning using an artificial immune system , 1996 .

[34]  Carlos Eduardo Fellows,et al.  Generalized simulated annealing method in the analysis of atom–atom interaction , 1999 .