Homogenization of Periodic Structured Materials With Chiral Properties

This paper presents a new and efficient method to compute the quasi-static homogenized constitutive parameters of biperiodic chiral artificial material. In this method, the studied domain is reduced to an elementary cell with pseudo-periodic conditions on the lateral sides and the local electromagnetic properties are computed by using the finite-element method. This chiral media is decomposed into two equivalent isotropic media and each one is treated separately. Indeed, the homogenized constitutive parameters of each isotropic media are expressed as a function of the macroscopic electromagnetic properties which are obtained by averaging the local electromagnetic properties. The homogenized constitutive parameters of the initial chiral material are expressed using the two equivalent isotropic materials. The validation of the numerical results is presented in the case of the lattices with 3-D inclusions. In addition, the obtained results are compared to existing results in literature. Finally, the incidence wave angle impact on the homogenized parameters is studied.

[1]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[2]  Homogenization of Maxwell's Equations in Lossy Biperiodic Metamaterials , 2013, IEEE Transactions on Antennas and Propagation.

[3]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[4]  A. Ciattoni,et al.  Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality , 2015, 1501.05570.

[5]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[6]  Effective electromagnetic properties of structured chiral metamaterials , 2006 .

[7]  Youcef Amirat,et al.  Homogenization of degenerate wave equations with periodic coefficients , 1993 .

[8]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[9]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[10]  Alain Bossavit,et al.  Modelling of periodic electromagnetic structures bianisotropic materials with memory effects , 2005 .

[11]  E. Rohan,et al.  Application of Multi-Scale Modelling to Some Elastic, Piezoelectric and Electromagnetic Composites , 2007 .

[12]  Joseph B. Keller,et al.  Partial Differential Equations with Periodic Coefficients and Bloch Waves in Crystals , 1964 .

[13]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[14]  Effective constitutive parameters of structured chiral metamaterials , 2006 .

[15]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[16]  Lewei Li,et al.  Homogenization of 3-D Periodic Bianisotropic Metamaterials , 2006, IEEE Transactions on Microwave Theory and Techniques.

[17]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[18]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[19]  Adel Razek,et al.  Homogenization of structured electromagnetic materials and metamaterials , 2007 .

[20]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[21]  A SIAMJ.,et al.  HOMOGENIZATION OF PERIODIC STRUCTURES VIA BLOCH DECOMPOSITION , 1997 .

[22]  A. Holmbom Homogenization of parabolic equations an alternative approach and some corrector-type results , 1997 .

[23]  G. Allaire Homogenization and two-scale convergence , 1992 .

[24]  Guy Bouchitté,et al.  Theory of mesoscopic magnetism in photonic crystals. , 2004, Physical review letters.

[25]  Quan Wang,et al.  A Study of Interaction between Embedded SMA Fibers and Host Material , 2006 .

[26]  Gerhard Kristensson,et al.  Homogenization of the Maxwell Equations at Fixed Frequency , 2003, SIAM J. Appl. Math..

[27]  C. Wilcox Theory of Bloch waves , 1978 .

[28]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[29]  Andrea Alu,et al.  First-principles homogenization theory for periodic metamaterials , 2011 .

[30]  Georges Griso,et al.  Modélisation de structures électromagnétiques périodiques – matériaux bianisotropes avec mémoire , 2004 .

[31]  O. Ouchetto,et al.  Modeling of 3-D periodic multiphase composites by homogenization , 2006, IEEE Transactions on Microwave Theory and Techniques.

[32]  Mario G. Silveirinha Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters , 2007 .

[33]  K. Cherednichenko,et al.  Bloch-wave homogenization for spectral asymptotic analysis of the periodic Maxwell operator , 2007 .

[34]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[35]  P. Donato,et al.  An introduction to homogenization , 2000 .

[36]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[37]  S. D. Assimonis,et al.  Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory , 2014 .

[38]  A. Bossavit,et al.  Effective constitutive parameters of periodic composites , 2005, 2005 European Microwave Conference.

[39]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[40]  Femke Olyslager,et al.  Electromagnetics and exotic media: a quest for the holy grail , 2002 .

[41]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[42]  Sergei A. Tretyakov,et al.  Local constitutive parameters of metamaterials from an effective-medium perspective , 2007 .