Harmonic Analysis in Non-Euclidean Spaces: Theory and Application

We discuss harmonic analysis in the settings of both Euclidean and non-Euclidean spaces, and then focus on two specific problems using this analysis – sampling theory and network tomography. These show both the importance of non-Euclidean spaces and some of the challenges one encounters when working in non-Euclidean geometry. Starting with an overview of surfaces, we demonstrate the importance of hyperbolic space in general surface theory, and then develop harmonic analysis in general settings, looking at the Fourier-Helgason transform and its inversion. We then focus on sampling and tomography.

[1]  Isaac Z. Pesenson,et al.  A sampling theorem on homogeneous manifolds , 2000 .

[2]  H. Feichtinger,et al.  Irregular sampling theorems and series expansions of band-limited functions , 1992 .

[3]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[4]  Stefan Kunis,et al.  Efficient Reconstruction of Functions on the Sphere from Scattered Data , 2007 .

[5]  J. Christensen,et al.  Sampling in Euclidean and Non-Euclidean Domains: A Unified Approach , 2015 .

[6]  J. R. Higgins Sampling theory in Fourier and signal analysis : foundations , 1996 .

[7]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[8]  S. Helgason Groups and geometric analysis , 1984 .

[9]  Tamara Munzner,et al.  Exploring Large Graphs in 3D Hyperbolic Space , 1998, IEEE Computer Graphics and Applications.

[10]  H. Feichtinger,et al.  Iterative reconstruction of multivariate band-limited functions from irregular sampling values , 1992 .

[11]  I. Pesenson A reconstruction formula for band limited functions in $L , 1999 .

[12]  Wavelet Transform on the Circle and the Real Line: a Unified Group-Theoretical Treatment ∗ , 2004, math-ph/0406057.

[13]  Isaac Pesenson,et al.  Reconstruction of Paley-Wiener functions on the Heisenberg group , 2011, 1108.5628.

[14]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[15]  Carlos A. Berenstein,et al.  Integral Geometry on Trees , 1991 .

[16]  Michael Robinson Understanding networks and their behaviors using sheaf theory , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[17]  A. Schuster Sets of sampling and interpolation in Bergman spaces , 1997 .

[18]  Isaac Z. Pesenson,et al.  Simple proposal for radial 3D needlets , 2014, 1408.1095.

[19]  Isaac Z. Pesenson,et al.  Sampling of Paley-Wiener functions on stratified groups , 1998 .

[20]  Carlos Alberto Berenstein,et al.  Integral Geometry in Hyperbolic Spaces and Electrical Impedance Tomography , 1996, SIAM J. Appl. Math..

[21]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[22]  K. Seip Regular sets of sampling and interpolation for weighted Bergman spaces , 1993 .

[23]  Isaac Z. Pesenson,et al.  Poincaré-Type inequalities and reconstruction of Paley-Wiener functions on manifolds , 2004 .

[24]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[25]  L. Ahlfors Complex Analysis , 1979 .

[26]  M. Calixto,et al.  Sampling Theorem and Discrete Fourier Transform on the Hyperboloid , 2011 .

[27]  Isaac Pesenson,et al.  FRAMES FOR SPACES OF PALEY-WIENER FUNCTIONS ON RIEMANNIAN MANIFOLDS , 2011, 1104.1710.

[28]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[29]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[30]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[31]  K. Grōchenig,et al.  Landau's necessary density conditions for LCA groups , 2008, 0803.3529.

[32]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[33]  K. Seip Beurling type density theorems in the unit disk , 1993 .

[34]  J. Benedetto Harmonic Analysis and Applications , 2020 .

[35]  Isaac Z. Pesenson,et al.  Paley-Wiener-Schwartz nearly Parseval frames on noncompact symmetric spaces , 2013 .

[36]  Michael Robinson,et al.  Imaging geometric graphs using internal measurements , 2016 .

[37]  Jeffrey R. Weeks,et al.  Measuring the shape of the Universe , 1998 .

[38]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[39]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[40]  Pat Hanrahan,et al.  Interactive visualization of large graphs and networks , 2000 .

[41]  Jens Gerlach Christensen,et al.  SAMPLING IN SPACES OF BANDLIMITED FUNCTIONS ON COMMUTATIVE SPACES , 2011, 1107.4578.

[42]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[43]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[44]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[45]  J. Sánchez-Monreal,et al.  Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere , 2006, math-ph/0612046.

[46]  Sigurdur Helgason,et al.  Geometric Analysis on Symmetric Spaces , 1994 .

[47]  Soon-Yeong Chung,et al.  Omega-Harmonic Functions and Inverse Conductivity Problems on Networks , 2005, SIAM J. Appl. Math..

[48]  I. Pesenson Sampling of Band-Limited Vectors , 2001 .