Computing Walrasian Equilibria: Fast Algorithms and Economic Insights

We give the first polynomial algorithm to compute a Walrasian equilibrium in an economy with indivisible goods and general valuations having only access to an aggregate demand oracle, i.e., an oracle that given a price vector, returns the aggregated demand over the entire population of buyers. Our algorithm queries the aggregate demand oracle $\tilde{O}(n)$ times and takes $\tilde{O}(n^3)$ time, where n is the number of items. We also give the fastest known algorithm for computing Walrasian equilibrium for gross substitute valuations in the value oracle model. Our algorithm has running time $\tilde{O}((mn+n^3 )T_V)$ where $T_V$ is the cost of querying the value oracle. En route, we give necessary and sufficient conditions for the existence of robust Walrasian prices, i.e., price vectors such that each agent has a unique demanded bundle and the demanded bundles clear the market. When such prices exist, the market can be perfectly coordinated by solely using prices.

[1]  K. Murota Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .

[2]  Ilan Newman,et al.  Ascending auctions and Walrasian equilibrium , 2013, ArXiv.

[3]  Renato Paes Leme,et al.  Gross substitutability: An algorithmic survey , 2017, Games Econ. Behav..

[4]  Walter Wenzel,et al.  Valuated matroids: a new look at the greedy algorithm , 1989 .

[5]  Yin Tat Lee,et al.  A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[6]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[7]  Zaifu Yang,et al.  A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..

[8]  Zaifu Yang,et al.  Equilibria and Indivisibilities: Gross Substitutes and Complements , 2006 .

[9]  A. Pekec,et al.  Efficient Iterative Auctions for Multi-Featured Items: A Network Flow Approach , 2014 .

[10]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[11]  Pravin M. Vaidya,et al.  A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..

[12]  Léon Walras Éléments d'économie politique pure, ou, Théorie de la richesse sociale , 1976 .

[13]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[14]  Paul R. Milgrom,et al.  Matching with Contracts , 2005 .

[15]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[16]  Justin Hsu,et al.  Do prices coordinate markets? , 2015, SECO.

[17]  Scott Duke Kominers,et al.  Hidden Substitutes , 2015, EC.

[18]  Kazuo Murota,et al.  Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..

[19]  Alexandru Nichifor,et al.  Full Substitutability in Trading Networks , 2015, EC.

[20]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[21]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[22]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[23]  K. Murota Convexity and Steinitz's Exchange Property , 1996 .

[24]  Zaifu Yang,et al.  Computing a Walrasian Equilibrium in Iterative Auctions with Multiple Differentiated Items , 2013, ISAAC.

[25]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[26]  S. Bikhchandani,et al.  Competitive Equilibrium in an Exchange Economy with Indivisibilities , 1997 .

[27]  Andreas W. M. Dress,et al.  Well-layered maps—A class of greedily optimizable set functions , 1995 .

[28]  A. Roth Stability and Polarization of Interests in Job Matching , 1984 .

[29]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[30]  Noam Nisan,et al.  On the Computational Power of Demand Queries , 2009, SIAM J. Comput..

[31]  A. Tamura,et al.  GROSS SUBSTITUTES CONDITION AND DISCRETE CONCAVITY FOR MULTI-UNIT VALUATIONS: A SURVEY , 2015 .

[32]  Lawrence M. Ausubel An efficient dynamic auction for heterogeneous commodities , 2006 .