Towards nonlinear model predictive control of fed-batch cultures of E. Coli

This paper proposes the design of a nonlinear model predictive control (NMPC) scheme for the regulation of the acetic acid concentration (leading to the biomass growth maximization) during high cell density fed-batch cultures of Escherichia coli. For NMPC purposes, an unstructured model for the growth is first derived with respect to the major metabolic pathways: oxidative growth on glucose, fermentative growth on glucose and oxidative growth on acetic acid. To avoid complexity in the application of the traditional version of NMPC to this process, the on-line optimization then proceeds using the control vector parameterization (CVP) approach. Finally, some simulation results are given to illustrate the efficiency of the proposed control strategy.

[1]  Ian David Lockhart Bogle,et al.  Modelling the effects of glucose feeding on a recombinant E. coli fermentation , 1999 .

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Didier Dumur,et al.  A practical robust control scheme for yeast fed-batch cultures – An experimental validation , 2006 .

[4]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[5]  Vassilios Vassiliadis,et al.  Computational solution of dynamic optimization problems with general differential-algebraic constraints , 1993 .

[6]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[7]  H W Doelle,et al.  Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12. , 1976, Microbios.

[8]  Isabel Rocha Model-based strategies for computer-aided operation of recombinant E. coli fermentation , 2003 .

[9]  B Sonnleitner,et al.  Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium. , 1998, Biotechnology and bioengineering.

[10]  S. Enfors,et al.  Modeling of Overflow Metabolism in Batch and Fed‐Batch Cultures of Escherichiacoli , 1999, Biotechnology progress.

[11]  R. Simutis,et al.  Model based design of a biochemical cultivation process , 1998 .

[12]  Klaus Schumann,et al.  High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1 , 1990, Applied Microbiology and Biotechnology.

[13]  G W Luli,et al.  Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations , 1990, Applied and environmental microbiology.

[14]  Didier Dumur,et al.  Control of Yeast Fed-Batch Cultures using Minimal a priori Process Knowledge and Measurement Information , 2007 .

[15]  J W Wimpenny,et al.  Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. , 1966, Biochimica et biophysica acta.

[16]  B D Davis,et al.  Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. , 1965, The Journal of biological chemistry.

[17]  Eva Balsa-Canto,et al.  Dynamic optimization of chemical and biochemical processes using restricted second order information , 2001 .

[18]  P. Dieu,et al.  Simultaneous adaptive predictive control of the partial pressures of dissolved oxygen (pO2) and dissolved carbon dioxide (pCO2) in a laboratory-scale bioreactor , 1996 .

[19]  Wolfgang Marquardt,et al.  Adaptive control vector parameterization for nonlinear model‐predictive control , 2008 .

[20]  Rimvydas Simutis,et al.  Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. , 2006, Journal of biotechnology.

[21]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .