General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy

[1]  K. Domen,et al.  Photocatalytic solar hydrogen production from water on a 100-m2 scale , 2021, Nature.

[2]  Debao Zhang,et al.  A flexible film to block solar radiation for daytime radiative cooling , 2021, Solar Energy Materials and Solar Cells.

[3]  Liang Yao,et al.  A semiconducting polymer bulk heterojunction photoanode for solar water oxidation , 2021, Nature Catalysis.

[4]  F. Glorius,et al.  Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes , 2021, Science.

[5]  Zhaokui Jin,et al.  Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst , 2021, Nature Communications.

[6]  G. Ozin,et al.  Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO2 Photocatalysis. , 2021, ACS nano.

[7]  Christine M. Gabardo,et al.  Designing anion exchange membranes for CO2 electrolysers , 2021, Nature Energy.

[8]  Geoffrey I N Waterhouse,et al.  Fe‐Based Catalysts for the Direct Photohydrogenation of CO2 to Value‐Added Hydrocarbons , 2021, Advanced Energy Materials.

[9]  S. Nihonyanagi,et al.  The photochemical reaction of phenol becomes ultrafast at the air–water interface , 2021, Nature Chemistry.

[10]  Mauro Fianchini,et al.  Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor , 2021, Nature Communications.

[11]  A. Govorov,et al.  Intensifying Heat Using MOF‐Isolated Graphene for Solar‐Driven Seawater Desalination at 98% Solar‐to‐Thermal Efficiency , 2021, Advanced Functional Materials.

[12]  Lai Wang,et al.  NiCrAlO/Al2O3 solar selective coating prepared by direct current magnetron sputtering and water boiling , 2021 .

[13]  Younan Xia,et al.  Physical Transformations of Noble-Metal Nanocrystals upon Thermal Activation. , 2020, Accounts of chemical research.

[14]  Deqing Mei,et al.  Solution‐Processed All‐Ceramic Plasmonic Metamaterials for Efficient Solar–Thermal Conversion over 100–727 °C , 2020, Advanced materials.

[15]  Huijuan Liu,et al.  Hot-electron-induced Photothermal Catalysis for Energy-dependent Molecular Oxygen Activation. , 2020, Angewandte Chemie.

[16]  G. J. Snyder,et al.  Electronic quality factor for thermoelectrics , 2020, Science Advances.

[17]  O. Bourgeois,et al.  Inducing micromechanical motion by optical excitation of a single quantum dot , 2020, Nature Nanotechnology.

[18]  K. Schouteden,et al.  Identifying Native Point Defects in the Topological Insulator Bi2Te3. , 2020, ACS nano.

[19]  F. Cichos,et al.  Applications and challenges of thermoplasmonics , 2020, Nature Materials.

[20]  C. Daniliuc,et al.  Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis , 2020, Science.

[21]  Chunlei Guo,et al.  Solar-trackable super-wicking black metal panel for photothermal water sanitation , 2020, Nature Sustainability.

[22]  K. Domen,et al.  Photocatalytic water splitting with a quantum efficiency of almost unity , 2020, Nature.

[23]  Yan Yu,et al.  Boosting Potassium Storage Performance of Cu2S Anode via Morphology Engineering and Electrolyte Chemistry. , 2020, ACS nano.

[24]  Zhong‐Shuai Wu,et al.  A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction , 2020, Journal of Energy Chemistry.

[25]  R. J. Wong,et al.  Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina , 2020, Nature Communications.

[26]  Xiaojiang Li,et al.  Bi2Te3 / Si Thermophotovoltaic Cells Converting Low-Temperature Radiation into Electricity , 2020, Physical Review Applied.

[27]  B. Jia,et al.  Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion , 2020, Nature Communications.

[28]  Zhichuan J. Xu,et al.  A review on fundamentals for designing oxygen evolution electrocatalysts. , 2020, Chemical Society reviews.

[29]  Saran Long,et al.  NIR Light‐Driving Barrier‐Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy , 2020, Advanced materials.

[30]  Guihua Yu,et al.  Biomass‐Derived Hybrid Hydrogel Evaporators for Cost‐Effective Solar Water Purification , 2020, Advanced materials.

[31]  Allison M. Rice,et al.  Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. , 2020, Chemical reviews.

[32]  Rian D. Dewhurst,et al.  Boron: Its Role in Energy‐Related Processes and Applications , 2020, Angewandte Chemie.

[33]  A. Lei,et al.  Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. , 2019, Accounts of chemical research.

[34]  C. Uher,et al.  High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization , 2019, Energy & Environmental Science.

[35]  Qinghua Zhang,et al.  Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production , 2019 .

[36]  Qiaoguang Li,et al.  Preparation of ATO-incorporated composite latex with tailored structure and controllable size for highly spectrum-selective applications , 2019, Materials & Design.

[37]  C. Tung,et al.  Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C 1 ‐Solarchemie , 2019, Angewandte Chemie.

[38]  Li-ping Zhu,et al.  Fe3Si assisted Co3O4 nanorods: A case study of photothermal catalytic CO oxidation under ambient solar irradiation , 2019, Nano Energy.

[39]  Jinhua Ye,et al.  Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation , 2019, Nature Communications.

[40]  Jingfeng Li,et al.  Development of integrated two-stage thermoelectric generators for large temperature difference , 2019, Science China Technological Sciences.

[41]  S. Kawi,et al.  Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: Methane suppression , 2019, Chemical Engineering Journal.

[42]  Dongyun Chen,et al.  Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2 WO6 Nanosheets with Enhanced Photocatalytic Activities. , 2019, Angewandte Chemie.

[43]  B. Tang,et al.  Round-the-Clock Photocatalytic Hydrogen Production with High Efficiency by a Long-Afterglow Material. , 2018, Angewandte Chemie.

[44]  P. Cheng,et al.  A perfect absorber design using a natural hyperbolic material for harvesting solar energy , 2018 .

[45]  Jinhua Ye,et al.  Superior Photocatalytic H2 Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor , 2017, Advanced materials.

[46]  G. J. Snyder,et al.  Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs , 2017 .

[47]  Jinhua Ye,et al.  Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. , 2017, Angewandte Chemie.

[48]  Cecilia Mondelli,et al.  Status and prospects in higher alcohols synthesis from syngas. , 2017, Chemical Society reviews.

[49]  Xiaodong Chen,et al.  High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles , 2017, Advanced materials.

[50]  Jinhua Ye,et al.  Targeted Synthesis of 2H‐ and 1T‐Phase MoS2 Monolayers for Catalytic Hydrogen Evolution , 2016, Advanced materials.

[51]  Liejin Guo,et al.  Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst , 2016, Nature Energy.

[52]  Dongsheng Xu,et al.  Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. , 2016, Journal of the American Chemical Society.

[53]  Gang Chen,et al.  Steam generation under one sun enabled by a floating structure with thermal concentration , 2016, Nature Energy.

[54]  Jong‐Sung Yu,et al.  A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production , 2015 .

[55]  Jinhua Ye,et al.  Nature-Inspired Environmental "Phosphorylation" Boosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. , 2015, Angewandte Chemie.

[56]  Kai Chen,et al.  Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers , 2015 .

[57]  Xiaoqiang An,et al.  Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. , 2014, Journal of the American Chemical Society.

[58]  Chongyin Yang,et al.  Effective nonmetal incorporation in black titania with enhanced solar energy utilization , 2014 .

[59]  R. Rodríguez‐Lugo,et al.  A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. , 2013, Nature chemistry.

[60]  M. Beller,et al.  Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide , 2013, Nature.

[61]  K. Otani,et al.  Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions , 2011 .

[62]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[63]  Adélio Mendes,et al.  Catalysts for methanol steam reforming—A review , 2010 .

[64]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[65]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[66]  R. Sathyamoorthy,et al.  Optical properties of thermally evaporated Bi2Te3 thin films , 2005 .

[67]  George A. Olah,et al.  The Methanol Economy , 2003 .

[68]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[69]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .