Bayesian inference for nonstationary marginal extremes

We propose a simple piecewise model for a sample of peaks-over-threshold, nonstationary with respect to multidimensional covariates, and estimate it using a carefully designed and computationally efficient Bayesian inference. Model parameters are themselves parameterized as functions of covariates using penalized B-spline representations. This allows detailed characterization of non-stationarity extreme environments. The approach gives similar inferences to a comparable frequentist penalized maximum likelihood method, but is computationally considerably more efficient and allows a more complete characterization of uncertainty in a single modelling step. We use the model to quantify the joint directional and seasonal variation of storm peak significant wave height at a northern North Sea location and estimate predictive directional–seasonal return value distributions necessary for the design and reliability assessment of marine and coastal structures.

[1]  Stuart Coles,et al.  Directional Modelling of Extreme Wind Speeds , 1994 .

[2]  José Pereira,et al.  Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes , 2010, Environmental and Ecological Statistics.

[3]  A. Monahan The Probability Distribution of Sea Surface Wind Speeds. Part I: Theory and SeaWinds Observations , 2006 .

[4]  C. Guedes Soares,et al.  Modelling distributions of significant wave height , 2000 .

[5]  A. Frigessi,et al.  A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .

[6]  C. Guedes Soares,et al.  Modelling the long-term time series of significant wave height with non-linear threshold models , 2000 .

[7]  R. Katz,et al.  Non-stationary extreme value analysis in a changing climate , 2014, Climatic Change.

[8]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[9]  G. Forristall On the statistical distribution of wave heights in a storm , 1978 .

[10]  R. Clark,et al.  Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan‐1 , 2011 .

[11]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[12]  Paul H. C. Eilers,et al.  Direct generalized additive modeling with penalized likelihood , 1998 .

[13]  M. D. Ugarte,et al.  Projections of cancer mortality risks using spatio-temporal P-spline models , 2012, Statistical methods in medical research.

[14]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[15]  P. Jonathan,et al.  Distributions of return values for ocean wave characteristics in the South China Sea using directional–seasonal extreme value analysis , 2015 .

[16]  Kevin Ewans,et al.  Statistical estimation of extreme ocean environments: The requirement for modelling directionality and other covariate effects , 2008 .

[17]  Y. Ashkenazy,et al.  On the Probability and Spatial Distribution of Ocean Surface Currents , 2011 .

[18]  Manchester,et al.  Cross‐validatory extreme value threshold selection and uncertainty with application to ocean storm severity , 2015, 1504.06653.

[19]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[20]  Melisa Menéndez,et al.  Seasonality and duration in extreme value distributions of significant wave height , 2008 .

[21]  D. Gamerman,et al.  Bayesian analysis of extreme events with threshold estimation , 2004 .

[22]  J. Bidlot,et al.  Wave Extremes in the North East Atlantic from Ensemble Forecasts , 2013, 1304.1354.

[23]  Øyvind Breivik,et al.  Wave Extremes in the Northeast Atlantic , 2012 .

[24]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[25]  M. Prevosto,et al.  Probability distributions for maximum wave and crest heights , 2000 .

[26]  M. Lang,et al.  Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data , 2006 .

[27]  Sverre Haver,et al.  Wave climate off northern Norway , 1985 .

[28]  M. Girolami,et al.  Langevin diffusions and the Metropolis-adjusted Langevin algorithm , 2013, 1309.2983.

[29]  M. Durbán,et al.  Generalized linear array models with applications to multidimensional smoothing , 2006 .

[30]  A. Davison,et al.  Generalized additive modelling of sample extremes , 2005 .

[31]  Philip Jonathan,et al.  Return level estimation from non-stationary spatial data exhibiting multidimensional covariate effects , 2014 .

[32]  Stuart Coles,et al.  Bayesian modelling of extreme surges on the UK east coast , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Vincent Jomelli,et al.  A Bayesian hierarchical extreme value model for lichenometry , 2006 .

[34]  Matthew A. Lackner,et al.  Probability distributions for offshore wind speeds , 2009 .

[35]  P. Jonathan,et al.  Statistics of extreme ocean environments: Non-stationary inference for directionality and other covariate effects , 2016, 1807.10542.

[36]  C. Guedes Soares,et al.  Modelling uncertainty in long-term predictions of significant wave height , 2001 .

[37]  J. A. Battjes,et al.  Wave height distributions on shallow foreshores , 2000 .

[38]  C. Guedes Soares,et al.  Bayesian inference for long-term prediction of significant wave height , 2007 .

[39]  Paul H. C. Eilers,et al.  Fast and compact smoothing on large multidimensional grids , 2006, Comput. Stat. Data Anal..

[40]  G. Russell,et al.  A flexible extreme value mixture model , 2011, Comput. Stat. Data Anal..