Testing the master constraint programme for loop quantum gravity: III. models

This is the third paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. In this work, we analyse models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper. These are systems with an gauge symmetry and the complications arise because non-compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the master constraint does not contain the point zero. However, the minimum of the spectrum is of order ℏ2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to ℏ normal ordering constants). The physical Hilbert space can then be obtained after subtracting this normal ordering correction.

[1]  T. Thiemann Quantum spin dynamics: VIII. The master constraint , 2005, gr-qc/0510011.

[2]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems , 2004, gr-qc/0411139.

[3]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: V. Interacting field theories , 2004, gr-qc/0411142.

[4]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: IV. Free field theories , 2004, gr-qc/0411141.

[5]  T. Thiemann The Phoenix Project: master constraint programme for loop quantum gravity , 2003, gr-qc/0305080.

[6]  T. Thiemann,et al.  Testing the master constraint programme for loop quantum gravity: I. General framework , 2004, gr-qc/0411138.

[7]  L. Smolin,et al.  An invitation to loop quantum gravity , 2004, hep-th/0408048.

[8]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[9]  A. Carey,et al.  On the Problem of the Amenability of the Gauge Group , 2004, math-ph/0401031.

[10]  Alberto Molgado,et al.  Group averaging in the (p, q) oscillator representation of SL(2, R) , 2003, gr-qc/0312014.

[11]  T. Thiemann,et al.  Irreducibility of the Ashtekar–Isham–Lewandowski representation , 2003, gr-qc/0303074.

[12]  T. Thiemann,et al.  On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories , 2003, gr-qc/0302090.

[13]  J. Lewandowski,et al.  Diffeomorphism covariant representations of the holonomy-flux ⋆-algebra , 2003, gr-qc/0302059.

[14]  T. Thiemann,et al.  Lectures on Loop Quantum Gravity , 2002, gr-qc/0210094.

[15]  H. Sahlmann Some Comments on the Representation Theory of the Algebra Underlying Loop Quantum Gravity , 2002 .

[16]  T. Thiemann,et al.  Towards the QFT on curved spacetime limit of QGR: I. A general scheme , 2002, gr-qc/0207030.

[17]  T. Thiemann,et al.  Towards the QFT on curved spacetime limit of QGR: II. A concrete implementation , 2002, gr-qc/0207031.

[18]  T. Thiemann,et al.  Coherent states for canonical quantum general relativity and the infinite tensor product extension , 2001, gr-qc/0102038.

[19]  Rafael A. Porto,et al.  Relational time in generally covariant quantum systems: four models , 2001, gr-qc/0101057.

[20]  J. Klauder,et al.  On the implementation of constraints through projection operators , 2000, quant-ph/0009072.

[21]  T. Thiemann Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories , 2000, hep-th/0005232.

[22]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamical limit , 2000, hep-th/0005235.

[23]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2000, hep-th/0005234.

[24]  T. Thiemann,et al.  Gauge field theory coherent states (GCS): II. Peakedness properties , 2000, hep-th/0005237.

[25]  T. Thiemann Gauge field theory coherent states (GCS): I. General properties , 2000, hep-th/0005233.

[26]  T Thiemann,et al.  Gauge field theory coherent states (GCS): III. Ehrenfest theorems , 2001 .

[27]  T Thiemann Quantum spin dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories , 2001 .

[28]  John R. Klauder,et al.  Quantization of Constrained Systems , 2000, hep-th/0003297.

[29]  T. Thiemann,et al.  Gauge Field Theory Coherent States (GCS) : III. , 2000 .

[30]  C. Rovelli,et al.  Refined algebraic quantization in the oscillator representation of SL(2,R) , 1999, gr-qc/9907004.

[31]  D. Marolf,et al.  On Group Averaging for SO(n,1) , 1999, gr-qc/9902069.

[32]  D. Marolf,et al.  A Uniqueness theorem for constraint quantization , 1999, gr-qc/9902045.

[33]  C. Rovelli,et al.  SL(2,R) model with two Hamiltonian constraints , 1999, gr-qc/9901073.

[34]  J. Klauder Universal procedure for enforcing quantum constraints , 1999, hep-th/9901010.

[35]  D. Marolf,et al.  On the generality of refined algebraic quantization , 1998, gr-qc/9812024.

[36]  T. Thiemann Quantum spin dynamics (QSD) V: Quantum Gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories , 1998 .

[37]  Carlo Rovelli,et al.  Loop Quantum Gravity , 1997, Living reviews in relativity.

[38]  T. Thiemann Kinematical Hilbert Spaces for Fermionic and Higgs Quantum Field Theories , 1997, gr-qc/9705021.

[39]  T. Thiemann,et al.  Quantum spin dynamics (QSD): II. The kernel of the Wheeler - DeWitt constraint operator , 1996, gr-qc/9606090.

[40]  T. Thiemann Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.

[41]  T Thiemann Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity , 1998 .

[42]  T. Thiemann,et al.  Quantum spin dynamics (QSD): VI. Quantum Poincaré algebra and a quantum positivity of energy theorem for canonical quantum gravity , 1997, gr-qc/9705020.

[43]  T. Thiemann Quantum spin dynamics (QSD): IV. ? Euclidean quantum gravity as a model to test ? Lorentzian quantum gravity , 1997, gr-qc/9705018.

[44]  T. Thiemann Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.

[45]  A. Ashtekar,et al.  Quantization of diffeomorphism invariant theories of connections with local degrees of freedom , 1995, gr-qc/9504018.

[46]  R. Howe,et al.  Non-Abelian Harmonic Analysis : Applications of SL (2,R) , 1992 .

[47]  Y. Neretin Tensor products of unitary representations of SL3(ℝ) , 1988 .

[48]  B. G. Adams,et al.  Lie Algebraic Methods and Their Applications to Simple Quantum Systems , 1988 .

[49]  J. Pier,et al.  Amenable Locally Compact Groups , 1984 .

[50]  R. Howe On some results of Strichartz and of Rallis and Schiffman , 1979 .

[51]  J. Repka Tensor Products of Unitary Representations of SL 2 (R) , 1978 .

[52]  H. Neunhöffer Über Kronecker-Produkte irreduzibler Darstellungen von SL (2, ℝ) , 1978 .

[53]  J. Repka Tensor products of unitary representations of ${\text{SL}}_2 \left( {\mathbf{R}} \right)$ , 1976 .

[54]  V. Bargmann,et al.  Irreducible unitary representations of the Lorentz group , 1947 .

[55]  S. Lanz Sitzungsberichte der Heidelberger Akademie der Wissenschaften , 1931 .