Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light.

Einstein-Podolsky-Rosen steering is known to be a key resource for one-sided device-independent quantum information protocols. Here we demonstrate steering using hybrid entanglement between continuous- and discrete-variable optical qubits. To this end, we report on suitable steering inequalities and detail the implementation and requirements for this demonstration. Steering is experimentally certified by observing a violation by more than 5 standard deviations. Our results illustrate the potential of optical hybrid entanglement for applications in heterogeneous quantum networks that would interconnect disparate physical platforms and encodings.

[1]  Paul Skrzypczyk,et al.  Optimal randomness certification in the quantum steering and prepare-and-measure scenarios , 2015, 1504.08302.

[2]  Olivier Morin,et al.  Experimentally accessing the optimal temporal mode of traveling quantum light states. , 2013, Physical review letters.

[3]  Sabine Wollmann,et al.  Conclusive Experimental Demonstration of One-Way Einstein-Podolsky-Rosen Steering. , 2018, Physical review letters.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Peter van Loock,et al.  Optical hybrid approaches to quantum information , 2010, 1002.4788.

[6]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[7]  K Huang,et al.  Microcontroller-based locking in optics experiments. , 2014, The Review of scientific instruments.

[8]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[9]  Le Phuc Thinh,et al.  Quantum randomness extraction for various levels of characterization of the devices , 2014, 1401.4243.

[10]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[11]  Kun Huang,et al.  High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. , 2016, Optics letters.

[12]  Pavel Sekatski,et al.  Witnessing trustworthy single-photon entanglement with local homodyne measurements , 2013 .

[13]  Xiaolong Su,et al.  Manipulating the direction of Einstein-Podolsky-Rosen steering , 2017, 1706.03165.

[14]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[15]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[16]  Sabine Wollmann,et al.  Observation of One-way Einstein-Podolsky-Rosen steering , 2018 .

[17]  Renato Renner,et al.  Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.

[18]  D Cavalcanti,et al.  Quantum steering: a review with focus on semidefinite programming , 2016, Reports on progress in physics. Physical Society.

[19]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[20]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[21]  Seung-Woo Lee,et al.  Generation of hybrid entanglement of light , 2014, Nature Photonics.

[22]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[23]  I. vSupi'c,et al.  Self-testing through EPR-steering , 2016, 1601.01552.

[24]  AlexandruGheorghiu Explorer Rigidity of quantum steering and one-sided device-independent verifiable quantum computation , 2017 .

[25]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[26]  Gerardo Adesso,et al.  Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. , 2017, Physical review letters.

[27]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[28]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[29]  Otfried Gühne,et al.  Increasing the statistical significance of entanglement detection in experiments. , 2009, Physical review letters.

[30]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[31]  R. Blume-Kohout Robust error bars for quantum tomography , 2012, 1202.5270.

[32]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.

[33]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[34]  N. Gisin,et al.  Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection. , 2016, Physical review letters.

[35]  Shuntaro Takeda,et al.  Deterministic quantum teleportation of photonic quantum bits by a hybrid technique , 2013, Nature.

[36]  N. Gisin,et al.  Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses , 2012, 1406.0381.

[37]  Shuntaro Takeda,et al.  Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements , 2014, Nature Communications.

[38]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[39]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[40]  Self-testing through EPR-steering , 2016 .

[41]  Nathan Walk,et al.  Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution , 2014, 1405.6593.

[42]  Vinay Ambegaokar,et al.  Estimating errors reliably in Monte Carlo simulations of the Ehrenfest model , 2010 .

[43]  J. Laurat,et al.  Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light , 2018, Optica.

[44]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[45]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[46]  C. Fabre,et al.  Quantum state engineering of light with continuous-wave optical parametric oscillators. , 2014, Journal of visualized experiments : JoVE.

[47]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[48]  V. Verma,et al.  Heralded quantum steering over a high-loss channel , 2016, Science Advances.

[49]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.