Compressed sensing image reconstruction method based on relevance vector grouping
暂无分享,去创建一个
The invention discloses a compressed sensing image reconstruction method based on relevance vector grouping, which mainly solves the problems of inaccuracy and low robustness of compressed sensing image reconstruction. The realization process is as follows: 1) receiving an observation matrix and an observation vector; 2) obtaining an initial relevance vector by the observation vector and a sending matrix; 3) dividing the relevance vector into sub-relevance vectors according to the spatial neighbourhood relationship of wavelet coefficients; 4) adding a component in each sub-relevance vector and sequencing the components; 5) updating the reconstructed wavelet high-frequency coefficients and observation vectors on the basis of a Bayesian framework according to the sequencing order; 6) carrying out invert wavelet transform on the reserved low-frequency wavelet decomposition coefficients and the reconstructed high-frequency wavelet coefficients to obtain a reconstructed image. Compared with OMP and BEPA methods, the compressed sensing image reconstruction method based on relevance vector grouping disclosed by the invention has the advantages of high quality and good robustness of the reconstructed image, and can be used for reconstruction for natural images and medical images.
[1] Fang Liu,et al. Multivariate pursuit image reconstruction using prior information beyond sparsity , 2013, Signal Process..