Relative weak global Gorenstein dimension, AB-contexts and model structures

In this paper we introduce and study the weak Gorenstein global dimension of a ring $R$ with respect to a left $R$-module $C$. We provide several characterizations of when this homological invariant is bounded. Two main applications are given: first, we prove that the weak Gorenstein global dimension of $R$ relative to a semidualizing $(R,S)$-bimodule $C$ can be computed either by the $\GC$-flat dimension of the left $R$-modules or right $S$-modules, just like the (absolute) weak global dimension. As a consequence, a new argument for solving Bennis' conjecture is obtained. As a second application, we give a concrete description of the weak equivalences in the $\GC$-flat model structure recently found by the authors. In order to prove this result, an interesting connection between abelian model structures and AB-weak contexts is proved. This connection leads to a result that can be applied to obtain abelian model structures with a simpler description of trivial objects.

[1]  Rachid El Maaouy Model structures, n-Gorenstein flat modules and PGF dimensions , 2023, 2302.12905.

[2]  D. Bennis,et al.  Relative Gorenstein flat modules and Foxby classes and their model structures , 2022, Journal of Algebra and Its Applications.

[3]  D. Bennis,et al.  Relative Gorenstein flat modules and dimension , 2022, Communications in Algebra.

[4]  Gang Yang,et al.  Constructions of Frobenius Pairs in Abelian Categories , 2022, Mediterranean Journal of Mathematics.

[5]  Sergio Estrada,et al.  Gorenstein weak global dimension is symmetric , 2021, Mathematische Nachrichten.

[6]  Model Categories,et al.  Model Categories , 2020, Foundations of Stable Homotopy Theory.

[7]  Marco A. P'erez,et al.  Model structures and relative Gorenstein flat modules and chain complexes , 2017, Categorical, Homological and Combinatorial Methods in Algebra.

[8]  J. Šaroch,et al.  Singular compactness and definability for 6 -cotorsion and Gorenstein modules , 2020 .

[9]  Jiangsheng Hu,et al.  Buchweitz’s equivalences for Gorenstein flat modules with respect to semidualizing modules , 2019 .

[10]  Marco A. Pérez,et al.  Frobenius pairs in abelian categories , 2016, 1602.07328.

[11]  Jiaqun Wei,et al.  Gorenstein homological dimensions with respect to a semidualizing module , 2018 .

[12]  A. Xu GORENSTEIN MODULES AND GORENSTEIN MODEL STRUCTURES , 2017, Glasgow Mathematical Journal.

[13]  Aimin Xu,et al.  Semidualizing bimodules and related Gorenstein homological dimensions , 2016 .

[14]  D. Bennis,et al.  Relative Projective and Injective Dimensions , 2016 .

[15]  D. Bennis,et al.  Relative Gorenstein Dimensions , 2016 .

[16]  James Gillespie Hereditary abelian model categories , 2015, 1512.06001.

[17]  S. Bouchiba A variant theory for the Gorenstein flat dimension , 2015 .

[18]  James Gillespie How to construct a Hovey triple from two cotorsion pairs , 2014, 1406.2619.

[19]  Juxiang Sun,et al.  Global dimensions of rings with respect to a semidualizing module , 2013, 1307.0628.

[20]  A. Xu,et al.  Gorenstein Projective Dimension Relative to a Semidualizing Bimodule , 2013 .

[21]  I. Emmanouil On the finiteness of Gorenstein homological dimensions , 2012 .

[22]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[23]  D. Bennis,et al.  Weak Gorenstein global dimension , 2009, 0905.0339.

[24]  Hai-yan Zhu,et al.  Wakamatsu tilting modules with finite FP-injective dimension , 2009 .

[25]  S. Sather-Wagstaff,et al.  AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules , 2008, 0803.0998.

[26]  Zhao Ying-cai On Gorenstein Flat Modules , 2007 .

[27]  D. White,et al.  Foxby equivalence over associative rings , 2006, math/0611838.

[28]  D. White Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.

[29]  J. Trlifaj,et al.  Approximations and Endomorphism Algebras of Modules , 2006 .

[30]  Overtoun M. G. Jenda,et al.  DUALIZING MODULES AND n-PERFECT RINGS , 2005, Proceedings of the Edinburgh Mathematical Society.

[31]  Peter Jørgensen,et al.  Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.

[32]  Mark Hovey Cotorsion pairs, model category structures, and representation theory , 2002 .

[33]  橋本 光靖 Auslander-Buchweitz approximations of equivariant modules , 2000 .

[34]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[35]  R. Buchweitz,et al.  The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .

[36]  D. Fieldhouse Character modules, dimension and purity , 1972, Glasgow Mathematical Journal.

[37]  D. Fieldhouse Character modules , 1971 .