Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

[1]  Marina Mastragostino,et al.  Thermal stability and flammability of electrolytes for lithium-ion batteries , 2011 .

[2]  Hirokazu Aoyama,et al.  Thermal Stability and Electrochemical Properties of Fluorine Compounds as Nonflammable Solvents for Lithium-Ion Batteries , 2010 .

[3]  Etsuro Iwama,et al.  Discharge Behavior and Rate Performances of Lithium-Ion Batteries in Nonflammable Hydrofluoroethers(II) , 2010 .

[4]  T. Nakajima,et al.  Electrochemical Behavior of Nonflammable Organo-Fluorine Compounds for Lithium Ion Batteries , 2009 .

[5]  C. Glorieux,et al.  Temperature dependence of the electrical conductivity of imidazolium ionic liquids. , 2008, The Journal of chemical physics.

[6]  S. Chakraborty,et al.  Thermal runaway inhibitors for lithium battery electrolytes , 2006 .

[7]  D. Abraham,et al.  Diagnostic examination of thermally abused high-power lithium-ion cells , 2006 .

[8]  Ganesan Nagasubramanian,et al.  Effects of additives on thermal stability of Li ion cells , 2005 .

[9]  G. Lindbergh,et al.  On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes , 2003 .

[10]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[11]  Kang Xu,et al.  An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes , 2002 .

[12]  J. Arai,et al.  Binary Mixed Solvent Electrolytes Containing Trifluoropropylene Carbonate for Lithium Secondary Batteries , 2002 .