A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming

Evolutionary programming can solve black-box function optimisation problems by evolving a population of numerical vectors. The variation component in the evolutionary process is supplied by a mutation operator, which is typically a Gaussian, Cauchy, or Levy probability distribution. In this paper, we use genetic programming to automatically generate mutation operators for an evolutionary programming system, testing the proposed approach over a set of function classes, which represent a source of functions. The empirical results over a set of benchmark function classes illustrate that genetic programming can evolve mutation operators which generalise well from the training set to the test set on each function class. The proposed method is able to outperform existing human designed mutation operators with statistical significance in most cases, with competitive results observed for the rest.

[1]  Oscar Cordón,et al.  A multiobjective evolutionary programming framework for graph-based data mining , 2013, Inf. Sci..

[2]  Libin Hong,et al.  Automated Design of Probability Distributions as Mutation Operators for Evolutionary Programming Using Genetic Programming , 2013, EuroGP.

[3]  Libin Hong,et al.  Automatically Designing More General Mutation Operators of Evolutionary Programming for Groups of Function Classes Using a Hyper-Heuristic , 2016, GECCO.

[4]  Riccardo Poli,et al.  Grammar-based genetic programming for timetabling , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Riccardo Poli,et al.  A histogram-matching approach to the evolution of bin-packing strategies , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[7]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[8]  R. Mantegna,et al.  Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  J. Mixter Fast , 2012 .

[10]  Ender Özcan,et al.  Policy matrix evolution for generation of heuristics , 2011, GECCO '11.

[11]  Ender Özcan,et al.  Matrix Analysis of Genetic Programming Mutation , 2012, EuroGP.

[12]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[13]  Ender Özcan,et al.  Generation of VNS Components with Grammatical Evolution for Vehicle Routing , 2013, EuroGP.

[14]  M. Xavier James Raj,et al.  Taboo Evolutionary Programming Approach to Optimal Transfer from Earth to Mars , 2011, SEMCCO.

[15]  P. K. Chattopadhyay,et al.  Evolutionary programming techniques for economic load dispatch , 2003, IEEE Trans. Evol. Comput..

[16]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[17]  Graham Kendall,et al.  Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one , 2007, GECCO '07.

[18]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[19]  Riccardo Poli,et al.  Linear genetic programming of parsimonious metaheuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Sean Luke,et al.  Lexicographic Parsimony Pressure , 2002, GECCO.

[21]  Mark Johnston,et al.  Evolving Ensembles of Dispatching Rules Using Genetic Programming for Job Shop Scheduling , 2015, EuroGP.

[22]  Alex Alves Freitas,et al.  Discovering New Rule Induction Algorithms with Grammar-based Genetic Programming , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[23]  Graham Kendall,et al.  Exploring Hyper-heuristic Methodologies with Genetic Programming , 2009 .

[24]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[25]  Jerry Swan,et al.  The automatic generation of mutation operators for genetic algorithms , 2012, GECCO '12.

[26]  Jerry Swan,et al.  Automatically designing selection heuristics , 2011, GECCO.

[27]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[28]  Ender Özcan,et al.  A genetic programming hyper-heuristic for the multidimensional knapsack problem , 2014, Kybernetes.

[29]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[30]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[32]  Ruhul A. Sarker,et al.  Adaptive Configuration of evolutionary algorithms for constrained optimization , 2013, Appl. Math. Comput..

[33]  Marko Privosnik The scalability of evolved on line bin packing heuristics , 2007, 2007 IEEE Congress on Evolutionary Computation.

[34]  Mihai Oltean,et al.  Evolving Crossover Operators for Function Optimization , 2006, EuroGP.

[35]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[36]  Riccardo Poli,et al.  Extending Particle Swarm Optimisation via Genetic Programming , 2005, EuroGP.

[37]  Mark Johnston,et al.  Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming , 2014, IEEE Transactions on Evolutionary Computation.

[38]  Sara Silva,et al.  GPLAB A Genetic Programming Toolbox for MATLAB , 2004 .

[39]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[40]  Ender Özcan,et al.  Sparse, Continuous Policy Representations for Uniform Online Bin Packing via Regression of Interpolants , 2017, EvoCOP.

[41]  Riccardo Poli,et al.  Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework , 2009, Memetic Comput..

[42]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[43]  Wei Hou,et al.  Evolutionary programming using a mixed mutation strategy , 2007, Inf. Sci..

[44]  Mengjie Zhang,et al.  Automated Design of Production Scheduling Heuristics: A Review , 2016, IEEE Transactions on Evolutionary Computation.