Persistence and Permanence of Mass-Action and Power-Law Dynamical Systems
暂无分享,去创建一个
[1] M. Savageau. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.
[2] R. Jackson,et al. General mass action kinetics , 1972 .
[3] Alicia Dickenstein,et al. Toric dynamical systems , 2007, J. Symb. Comput..
[4] D. Siegel,et al. Global stability of complex balanced mechanisms , 2000 .
[5] David F. Anderson,et al. The Dynamics of Weakly Reversible Population Processes near Facets , 2010, SIAM J. Appl. Math..
[6] H. I. Freedman,et al. Mathematical analysis of some three-species food-chain models , 1977 .
[7] Bernd Sturmfels,et al. Siphons in Chemical Reaction Networks , 2009, Bulletin of mathematical biology.
[8] Casian Pantea,et al. On the Persistence and Global Stability of Mass-Action Systems , 2011, SIAM J. Math. Anal..
[9] M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .
[10] Mitio Nagumo. Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .
[11] David Angeli,et al. Persistence Results for Chemical Reaction Networks with Time-Dependent Kinetics and No Global Conservation Laws , 2011, SIAM J. Appl. Math..
[12] Eduardo D. Sontag. Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..
[13] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[14] Eduardo Sontag,et al. A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks , 2007 .
[15] Y. Takeuchi. Global Dynamical Properties of Lotka-Volterra Systems , 1996 .
[16] David F. Anderson,et al. Global Asymptotic Stability for a Class of Nonlinear Chemical Equations , 2007, SIAM J. Appl. Math..
[17] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[18] Franco Blanchini,et al. Set invariance in control , 1999, Autom..
[19] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[20] M. Feinberg,et al. Understanding bistability in complex enzyme-driven reaction networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[21] P. Schuster,et al. On $\omega $-Limits for Competition Between Three Species , 1979 .
[22] Martin Feinberg,et al. On the steady states of weakly reversible chemical reaction networks , 2011, 1111.2386.