A Bilinear Bäcklund Transformation and N-Soliton-Like Solution of Three Coupled Higher-Order Nonlinear Schrödinger Equations with Symbolic Computation

A bilinear Backlund transformation is presented for the three coupled higher-order nonlinear Schrodinger equations with the inclusion of the group velocity dispersion, third-order dispersion and Kerr-law nonlinearity, which can describe the dynamics of alpha helical proteins in living systems as well as the propagation of ultrashort pulses in wavelength-division multiplexed system. Starting from the Backlund transformation, the analytical soliton solution is obtained from a trivial solution. Simultaneously, the N-soliton-like solution in double Wronskian form is constructed, and the corresponding proof is also given via the Wronskian technique. The results obtained from this paper might be valuable in studying the transfer of energy in biophysics and the transmission of light pulses in optical communication systems.

[1]  K. Porsezian,et al.  Propagation of dark solitons with higher-order effects in optical fibers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  K. Nakkeeran,et al.  OPTICAL SOLITONS IN N-COUPLED HIGHER ORDER NONLINEAR SCHRODINGER EQUATIONS , 1998 .

[3]  Hongqing Zhang,et al.  Generalized Riccati equation expansion method and its application to the (3 + 1)-dimensional Jumbo-Miwa equation , 2004, Appl. Math. Comput..

[4]  Yoshimasa Matsuno,et al.  Bilinear Transformation Method , 1984 .

[5]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[6]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[7]  Tao Xu,et al.  Integrable properties of a variable-coefficient Korteweg-de Vries model from Bose-Einstein condensates and fluid dynamics , 2006 .

[8]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[9]  K. Porsezian,et al.  Complete integrability of N-coupled higher-order nonlinear Schrödinger equations in nonlinear optics , 1999 .

[10]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[11]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[12]  A. H. Khater,et al.  Bäcklund transformations and exact solutions for some nonlinear evolution equations in solar magnetostatic models , 2002 .

[13]  Qi-Ming Liu,et al.  Double Wronskian Solutions of the AKNS and the Classical Boussinesq Hierarchies , 1990 .

[14]  M. M. Latha,et al.  Soliton in discrete and continuum alpha helical proteins with interspine coupling , 1999 .

[15]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[16]  M. Lakshmanan,et al.  Bright and dark optical solitons in coupled higher-order nonlinear Schrodinger equations through singularity structure analysis , 1995 .

[17]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[18]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[19]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation , 2007 .

[20]  Bo Tian,et al.  Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation , 2006 .

[21]  Gao Xiaoshan,et al.  Applications of Computer Algebra in Solving Nonlinear Evolution Equations , 2004 .

[22]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[23]  M. M. Latha,et al.  A generalized Davydov soliton model for energy transfer in alpha helical proteins , 2001 .

[24]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[25]  N. C. Freeman Soliton Solutions of Non-linear Evolution Equations , 1984 .

[26]  Gegenhasi,et al.  2D Toda lattice equation with self-consistent sources , 2007 .

[27]  Zachariah Sinkala,et al.  Soliton/exciton transport in proteins. , 2006, Journal of theoretical biology.

[28]  Xing Lü,et al.  Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications , 2007 .

[29]  Bernard Piette,et al.  Charge and energy transfer by solitons in low-dimensional nanosystems with helical structure , 2006 .

[30]  Deng-yuan Chen,et al.  Soliton solutions to the 3rd nonisospectral AKNS system , 2006 .

[31]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[32]  M. M. Latha,et al.  Soliton in alpha helical proteins with interspine coupling at higher order , 2002 .

[33]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[34]  K. Deepamala,et al.  Davydov soliton in alpha helical proteins: higher order and discreteness effects , 1995 .

[35]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[36]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[37]  K. Porsezian,et al.  Propagation of dark solitons in a system of coupled higher-order nonlinear Schrödinger equations , 2002 .

[38]  Bo Tian,et al.  (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation , 2006 .

[39]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[40]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[41]  Woo-Pyo Hong,et al.  Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation” [Phys. Lett. A 340 (2005) 243] , 2007 .

[42]  Bo Tian,et al.  Symbolic computation on integrable properties of a variable-coefficient Korteweg–de Vries equation from arterial mechanics and Bose–Einstein condensates , 2007 .

[43]  L Brizhik,et al.  Solitons in alpha-helical proteins. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.