Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit.

Geometric phases are noise resilient, and thus provide a robust way towards high-fidelity quantum manipulation. Here we experimentally demonstrate arbitrary nonadiabatic holonomic single-qubit quantum gates for both a superconducting transmon qubit and a microwave cavity in a single-loop way. In both cases, an auxiliary state is utilized, and two resonant microwave drives are simultaneously applied with well-controlled but varying amplitudes and phases for the arbitrariness of the gate. The resulting gates on the transmon qubit achieve a fidelity of 0.996 characterized by randomized benchmarking and the ones on the cavity show an averaged fidelity of 0.978 based on a full quantum process tomography. In principle, a nontrivial two-qubit holonomic gate between the qubit and the cavity can also be realized based on our presented experimental scheme. Our experiment thus paves the way towards practical nonadiabatic holonomic quantum manipulation with both qubits and cavities in a superconducting circuit.

[1]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[2]  Implementation of holonomic quantum computation through engineering and manipulating the environment , 2007, 0704.0482.

[3]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[4]  D. M. Tong,et al.  Non-adiabatic Holonomic Gates realized by a single-shot implementation , 2015, 1511.00919.

[5]  V. O. Shkolnikov,et al.  Holonomic Quantum Control by Coherent Optical Excitation in Diamond. , 2017, Physical review letters.

[6]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[7]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[8]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[9]  Liang Jiang,et al.  Quantum memory with millisecond coherence in circuit QED , 2015, 1508.05882.

[10]  P. Leek,et al.  Coherence and decay of higher energy levels of a superconducting transmon qubit. , 2014, Physical review letters.

[11]  A. Falcon Physics I.1 , 2018 .

[12]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[13]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[16]  Suman Kundu,et al.  Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product , 2015, 1510.03065.

[17]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[18]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[19]  Andreas Wallraff,et al.  Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons , 2018 .

[20]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[21]  E. Sjoqvist,et al.  Single-loop multiple-pulse nonadiabatic holonomic quantum gates , 2016, 1608.07418.

[22]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[23]  N. Zanghí,et al.  On the stability of quantum holonomic gates , 2012, 1209.1693.

[24]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[25]  Hideo Kosaka,et al.  Optical holonomic single quantum gates with a geometric spin under a zero field , 2017 .

[26]  Yang Liu,et al.  Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins , 2017, 1703.10348.

[27]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[28]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[29]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[30]  S. Filipp,et al.  Control and tomography of a three level superconducting artificial atom. , 2010, Physical review letters.

[31]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[32]  S. Berger,et al.  Exploring the effect of noise on the Berry phase , 2013, 1302.3305.

[33]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[34]  W. Munro,et al.  Qudit quantum-state tomography , 2002 .

[35]  Shi-Biao Zheng,et al.  Converting Quasiclassical States into Arbitrary Fock State Superpositions in a Superconducting Circuit. , 2017, Physical review letters.

[36]  Andrew G. Glen,et al.  APPL , 2001 .

[37]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[38]  F. Joseph Heremans,et al.  Optical manipulation of the Berry phase in a solid-state spin qubit , 2016 .

[39]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[40]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  R. J. Schoelkopf,et al.  Tracking photon jumps with repeated quantum non-demolition parity measurements , 2013, Nature.

[42]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[43]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[44]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[45]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[46]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[47]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[48]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[49]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[50]  Zach DeVito,et al.  Opt , 2017 .

[51]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[52]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[53]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[54]  Vogel,et al.  Quantum state engineering of the radiation field. , 1993, Physical review letters.

[55]  S. Girvin,et al.  0 40 73 25 v 1 1 3 Ju l 2 00 4 Circuit Quantum Electrodynamics : Coherent Coupling of a Single Photon to a Cooper Pair Box , 2022 .

[56]  Paolo Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999 .

[57]  L. Frunzio,et al.  Fault-tolerant measurement of a quantum error syndrome , 2018, 1803.00102.

[58]  S. Berger,et al.  Microwave-Induced Amplitude and Phase Tunable Qubit-Resonator Coupling in Circuit Quantum Electrodynamics , 2015, 1502.03692.

[59]  Ke Liu,et al.  A twofold quantum delayed-choice experiment in a superconducting circuit , 2016, Science Advances.

[60]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[61]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[62]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[63]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[64]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[65]  S. Berger,et al.  Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics , 2013, 1308.4094.

[66]  R. J. Schoelkopf,et al.  Reaching 10 ms single photon lifetimes for superconducting aluminum cavities , 2013, 1302.4408.

[67]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[68]  S. Gasparinetti,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[69]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[70]  Z. D. Wang,et al.  Implementing universal nonadiabatic holonomic quantum gates with transmons , 2017, 1710.03141.

[71]  Erik Sjöqvist,et al.  A new phase in quantum computation , 2008 .

[72]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[73]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[74]  A. Shnirman,et al.  Geometric quantum gates with superconducting qubits , 2011, 1104.0159.

[75]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[76]  Mazyar Mirrahimi,et al.  Holonomic Quantum Control with Continuous Variable Systems. , 2015, Physical review letters.

[77]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[78]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[79]  Michel Devoret,et al.  Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier , 2009, 0902.0007.

[80]  H. Kosaka,et al.  Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. , 2018, Optics letters.

[81]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[82]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[83]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[84]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[85]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.