Surface Adsorption Energetics Studied with "Gold Standard" Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110).

Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T)) is widely considered to be the "gold standard" of ab initio quantum chemistry. Using the domain-based pair natural orbital local correlation concept (DLPNO-CCSD(T)), these calculations can be performed on systems with hundreds of atoms at an accuracy of ∼99.9% of the canonical CCSD(T) method. This allows for ab initio calculations providing reference adsorption energetics at solid surfaces with an accuracy approaching 1 kcal/mol. This is an invaluable asset, not least for the assessment of density functional theory (DFT) as the prevalent approach for large-scale production calculations in energy or catalysis applications. Here we use DLPNO-CCSD(T) with embedded cluster models to compute entire adsorbate potential energy surfaces for the binding of a set of prototypical closed-shell molecules (H2O, NH3, CH4, CH3OH, CO2) to the rutile TiO2(110) surface. The DLPNO-CCSD(T) calculations show excellent agreement with available experimental data, even for the "infamous" challenge of correctly predicting the CO2 adsorption geometry. The numerical efficiency of the approach is within 1 order of magnitude of hybrid-level DFT calculations, hence blurring the borders between reference and production technique.

[1]  B. D. Kay,et al.  Adsorption of small hydrocarbons on rutile TiO2(110) , 2016 .

[2]  Shishen Yan,et al.  Adsorption and interaction of CO2 on rutile TiO2(110) surfaces: a combined UHV-FTIRS and theoretical simulation study. , 2015, Physical chemistry chemical physics : PCCP.

[3]  Y. Minenkov,et al.  Accuracy of DLPNO-CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes. , 2015, Journal of chemical theory and computation.

[4]  Dimitrios G Liakos,et al.  Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. , 2015, Journal of chemical theory and computation.

[5]  Andrew J. Medford,et al.  From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis , 2015 .

[6]  Gonzalo Prieto,et al.  Bridging the gap between insightful simplicity and successful complexity: From fundamental studies on model systems to technical catalysts , 2015 .

[7]  K. Reuter,et al.  First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO 2 (110) surface , 2015, 1506.00596.

[8]  Manoj K. Kesharwani,et al.  Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. , 2015, Journal of chemical theory and computation.

[9]  Paul Sherwood,et al.  Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. , 2014, The Journal of chemical physics.

[10]  Joachim Sauer,et al.  Accurate adsorption energies of small molecules on oxide surfaces: CO-MgO(001). , 2013, Physical chemistry chemical physics : PCCP.

[11]  M. Scheffler,et al.  Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). , 2013, Physical review letters.

[12]  Pavel Hobza,et al.  Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit? , 2013, Journal of chemical theory and computation.

[13]  C. Campbell,et al.  Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. , 2013, Chemical reviews.

[14]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[15]  C. Hättig,et al.  A combined experimental and computational study on the adsorption and reactions of NO on rutile TiO2. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Ali Alavi,et al.  Towards an exact description of electronic wavefunctions in real solids , 2012, Nature.

[17]  B. D. Kay,et al.  Structure and dynamics of CO2 on rutile TiO2(110)- 1×1 , 2012 .

[18]  S. Grimme,et al.  A DFT-D study of structural and energetic properties of TiO2 modifications , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  M. Schütz,et al.  Geometrical frustration of an argon monolayer adsorbed on the MgO (100) surface: An accurate periodic ab initio study , 2012 .

[20]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[21]  B. D. Kay,et al.  Determination of Absolute Coverages for Small Aliphatic Alcohols on TiO2(110) , 2011 .

[22]  P. Sutter,et al.  CO2 Adsorption, Diffusion, and Electron-Induced Chemistry on Rutile TiO2(110): A Low-Temperature Scanning Tunneling Microscopy Study , 2011 .

[23]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[24]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[25]  K. Jordan,et al.  CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments. , 2011, The Journal of chemical physics.

[26]  Frank Neese,et al.  Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? , 2011, Journal of chemical theory and computation.

[27]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[28]  Joachim Sauer,et al.  Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH(4)/MgO(001). , 2010, Physical chemistry chemical physics : PCCP.

[29]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[30]  F Mittendorfer,et al.  Accurate surface and adsorption energies from many-body perturbation theory. , 2010, Nature materials.

[31]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[32]  A. Asthagiri,et al.  Molecular adsorption of small alkanes on a PdO(101) thin film: Evidence of sigma-complex formation. , 2010, The Journal of chemical physics.

[33]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[34]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[35]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[36]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[37]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[38]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[39]  B. D. Kay,et al.  n-alkanes on Pt(111) and on C(0001)Pt(111): chain length dependence of kinetic desorption parameters. , 2006, Journal of Chemical Physics.

[40]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[41]  G. Scuseria,et al.  Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.

[42]  B. D. Kay,et al.  n-alkanes on MgO(100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes. , 2005, The Journal of chemical physics.

[43]  J. Yates,et al.  CO2 as a probe for monitoring the surface defects on TiO2(110): Temperature-programmed desorption , 2003 .

[44]  Trygve Helgaker,et al.  Basis set convergence of the interaction energy of hydrogen-bonded complexes , 1999 .

[45]  A. Auroux,et al.  Calorimetric Study of the Acidity and Interface Effects of Tin Dioxide Layers Deposited on Another Metal Oxide , 1999 .

[46]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[47]  L. Gamble,et al.  Decomposition and protonation of surface ethoxys on TiO2 (110) , 1996 .

[48]  Charles T. Campbell,et al.  The interaction of H2O with a TiO2(110) surface , 1994 .

[49]  V. Staemmler,et al.  Ab initio calculations for the adsorption of small molecules on metal oxide surfaces. I. Cluster calculations for carbon monoxide CO on nickel oxide NiO(100) , 1992 .

[50]  T. Srnak,et al.  Temperature-programmed desorption/reaction and in situ spectroscopic studies of vanadia/titania for catalytic reduction of nitric oxide , 1992 .

[51]  Robert Zaleśny,et al.  Linear-Scaling Techniques in Computational Chemistry and Physics , 2011 .

[52]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .