Measuring the knot of degeneracies and the eigenvalue braids near a third-order exceptional point

Y. S. S. Patil1, J. Höller1, P. A. Henry2, C. Guria1, Y. Zhang1, L. Jiang1, N. Kralj1,3, N. Read1,2,4, J. G. E. Harris1,2,4 1 Department of Physics, Yale University, New Haven, Connecticut 06520, USA 2 Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA 3 Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark 4 Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA

[1]  S. Fan,et al.  Topological complex-energy braiding of non-Hermitian bands , 2021, Nature.

[2]  N. Mitchell,et al.  Real-space origin of topological band gaps, localization, and reentrant phase transitions in gyroscopic metamaterials. , 2021, Physical review. E.

[3]  D. Garling Galois Theory and Its Algebraic Background , 2021 .

[4]  E. Zhao,et al.  Knots and Non-Hermitian Bloch Bands. , 2020, Physical review letters.

[5]  J. Wiersig Review of exceptional point-based sensors , 2020 .

[6]  S. Fan,et al.  Topological Classification of Non-Hermitian Hamiltonians , 2019, 1911.12748.

[7]  Q. Zhong,et al.  Exceptional-Point-Based Optical Amplifiers , 2019, Physical Review Applied.

[8]  S. Fan,et al.  Dynamics for Encircling an Exceptional Point in a Nonlinear Non-Hermitian System , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[9]  Andrea Alù,et al.  Enhanced Sensing and Nondegraded Thermal Noise Performance Based on PT-Symmetric Electronic Circuits with a Sixth-Order Exceptional Point. , 2019, Physical review letters.

[10]  Yogesh N. Joglekar,et al.  Quantum state tomography across the exceptional point in a single dissipative qubit , 2019, Nature Physics.

[11]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[12]  Z. Q. Zhang,et al.  Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators , 2018, Nature Communications.

[13]  D. Christodoulides,et al.  Winding around non-Hermitian singularities , 2018, Nature Communications.

[14]  E. Bergholtz,et al.  Exceptional links and twisted Fermi ribbons in non-Hermitian systems , 2018, Physical Review A.

[15]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[16]  Shanhui Fan,et al.  Robust wireless power transfer using a nonlinear parity–time-symmetric circuit , 2017, Nature.

[17]  H. Xu,et al.  Exceptional points in an optomechanical system , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[18]  Franco Nori,et al.  Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. , 2016, Physical review letters.

[19]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[20]  H. Xu,et al.  Topological energy transfer in an optomechanical system with exceptional points , 2016, Nature.

[21]  Jahrme Risner,et al.  Braid Groups , 2016 .

[22]  Z. Q. Zhang,et al.  Coalescence of exceptional points and phase diagrams for one-dimensional PT -symmetric photonic crystals , 2015, 1509.07948.

[23]  Z. Q. Zhang,et al.  The emergence, coalescence and topological properties of multiple exceptional points and their experimental realization , 2015, 1509.06886.

[24]  D. Kleckner,et al.  Topological mechanics of gyroscopic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[25]  F. Nori,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[26]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[27]  N. Flowers-Jacobs,et al.  Optically mediated hybridization between two mechanical modes. , 2013, Physical review letters.

[28]  Soo-Young Lee,et al.  Geometric phase around multiple exceptional points , 2012 .

[29]  Soo-Young Lee,et al.  Analysis of multiple exceptional points related to three interacting eigenmodes in a non-Hermitian Hamiltonian , 2011, 1109.4216.

[30]  M. Berry,et al.  Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon , 2011 .

[31]  E. Graefe,et al.  Signatures of three coalescing eigenfunctions , 2011, 1110.1489.

[32]  N. Moiseyev,et al.  On the observability and asymmetry of adiabatic state flips generated by exceptional points , 2011 .

[33]  E. Torrontegui,et al.  Shortcuts to adiabaticity for non-Hermitian systems , 2011, 1106.2776.

[34]  M. Segev,et al.  PT-symmetry in honeycomb photonic lattices , 2011, 1103.3389.

[35]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[36]  J. Main,et al.  Exceptional points in the spectra of atoms in external fields , 2009, 0902.4777.

[37]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[38]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[39]  H. Korsch,et al.  A non-Hermitian symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points , 2008, 0802.3164.

[40]  W. Heiss Chirality of wavefunctions for three coalescing levels , 2007, 0708.1392.

[41]  H. Korsch,et al.  Crossing scenario for a nonlinear non-Hermitian two-level system , 2006 .

[42]  Biao Wu,et al.  Geometric phase for adiabatic evolutions of general quantum states. , 2005, Physical review letters.

[43]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[44]  Zhao,et al.  Steering an eigenstate to a destination , 2000, Physical review letters.

[45]  G. Nenciu,et al.  On the adiabatic theorem for nonself-adjoint Hamiltonians , 1992 .

[46]  Yong-Shi Wu General Theory for Quantum Statistics in Two-Dimensions , 1984 .

[47]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[48]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[49]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[50]  V. Arnold On some topological invariants of algebraic functions , 1970 .

[51]  E. Artin The theory of braids. , 1950, American scientist.

[52]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.

[53]  A. Hurwitz Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten , 1891 .