Elastic functional principal component regression

We study regression using functional predictors in situations where these functions contain both phase and amplitude variability. In other words, the functions are misaligned due to errors in time measurements, and these errors can significantly degrade both model estimation and prediction performance. The current techniques either ignore the phase variability, or handle it via pre-processing, i.e., use an off-the-shelf technique for functional alignment and phase removal. We develop a functional principal component regression model which has comprehensive approach in handling phase and amplitude variability. The model utilizes a mathematical representation of the data known as the square-root slope function. These functions preserve the $\mathbf{L}^2$ norm under warping and are ideally suited for simultaneous estimation of regression and warping parameters. Using both simulated and real-world data sets, we demonstrate our approach and evaluate its prediction performance relative to current models. In addition, we propose an extension to functional logistic and multinomial logistic regression

[1]  Sebastian Kurtek,et al.  Bayesian sensitivity analysis with the Fisher–Rao metric , 2015 .

[2]  Gareth M. James,et al.  Functional linear regression that's interpretable , 2009, 0908.2918.

[3]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[4]  David E. Tyler,et al.  Robust functional principal components: A projection-pursuit approach , 2011, 1203.2027.

[5]  Wei Wu,et al.  Signal Estimation Under Random Time-Warpings and Nonlinear Signal Alignment , 2011, NIPS.

[6]  P. Reiss,et al.  Functional Principal Component Regression and Functional Partial Least Squares , 2007 .

[7]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[8]  Radu Herbei,et al.  Bayesian Registration of Functions With a Gaussian Process Prior , 2017 .

[9]  Sungkyu Jung,et al.  Combined Analysis of Amplitude and Phase Variations in Functional Data , 2016, 1603.01775.

[10]  Anuj Srivastava,et al.  Looking for Shapes in Two-Dimensional Cluttered Point Clouds , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Eric Klassen,et al.  Precise Matching of PL Curves in $R^N$ in the Square Root Velocity Framework , 2015, 1501.00577.

[12]  A. Cuevas,et al.  Linear functional regression: The case of fixed design and functional response , 2002 .

[13]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[14]  J Gertheiss,et al.  Variable selection in generalized functional linear models , 2013, Stat.

[15]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[16]  D. Gervini Warped functional regression , 2012, 1203.1975.

[17]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[18]  S. Kurtek A Geometric Approach to Pairwise Bayesian Alignment of Functional Data Using Importance Sampling , 2015, 1505.06954.

[19]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[20]  Steven G Kargl,et al.  Acoustic response of unexploded ordnance (UXO) and cylindrical targets , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[21]  Wei Wu,et al.  Analysis of signals under compositional noise with applications to SONAR data , 2012, 2012 Oceans.

[22]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[24]  J. Marron,et al.  Analysis of principal nested spheres. , 2012, Biometrika.

[25]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[26]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[28]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[29]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[30]  Rama Chellappa,et al.  Rate-Invariant Recognition of Humans and Their Activities , 2009, IEEE Transactions on Image Processing.

[31]  S. Dabo‐Niang,et al.  Generalized Functional Linear Models under Choice-Based Sampling , 2016 .

[32]  J. S. Marron,et al.  Functional Data Analysis of Amplitude and Phase Variation , 2015, 1512.03216.

[33]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[34]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[35]  P. Sarda,et al.  Functional linear model , 1999 .

[36]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..