Linear-quadratic parametrization of stabilizing controls in discrete-time 2D systems

This paper considers a class of linear discrete-time 2D systems in the form of repetitive processes with uncertain parameters. Using LQR theory ideas a parametric description of stabilizing controls via output feedback is developed, which leads to the development of efficient LMI-based algorithms for computation of the gain matrix. The results are extended to repetitive processes with Markovian jumps, and a numerical example is given to demonstrate the application of the algorithm developed to the synthesis of stabilizing control laws.

[1]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[2]  T. Fujii,et al.  A new approach to the LQ design from the viewpoint of the inverse regulator problem , 1987 .

[3]  C. D. Johnson The ‘unreachable poles’ defect in LQR theory: analysis and remedy , 1988 .

[4]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[5]  Eric Rogers,et al.  Stability Analysis for Linear Repetitive Processes , 1992 .

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  L. Ghaoui,et al.  LMI optimization for nonstandard Riccati equations arising in stochastic control , 1996, IEEE Trans. Autom. Control..

[8]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  P. D. Roberts Numerical Investigation of a Stability Theorem Arising from the 2-Dimensional Analysis of an Iterative Optimal Control Algorithm , 2000, Multidimens. Syst. Signal Process..

[12]  Kiev,et al.  Stability and Stabilization of Nonlinear Systems with Random Structure , 2002 .

[13]  Takao Watanabe,et al.  A unified algebraic approach to linear control design: Robert E. Skelton, Tetsuya Iwasaki and Karolos M. Grigoriadis; Copyright Taylor & Francis, 1998, ISBN: 0-7484-0592-5 , 2003, Autom..

[14]  R. Rabenstein,et al.  Towards a framework for continuous and discrete multidimensional systems , 2003 .

[15]  Takao Watanabe Book reviews: A unified algebraic approach to linear control design , 2003 .

[16]  Huijun Gao,et al.  Stabilization and H∞ control of two-dimensional Markovian jump systems , 2004, IMA J. Math. Control. Inf..

[17]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[18]  Geir E. Dullerud,et al.  Distributed control of heterogeneous systems , 2004, IEEE Transactions on Automatic Control.

[19]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[20]  Ettore Fornasini,et al.  Doubly-indexed dynamical systems: State-space models and structural properties , 1978, Mathematical systems theory.

[21]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[22]  F. Lewis,et al.  Parameterization of All Stabilizing Hc. Static State-Feedback Gains: Application to Output-Feedback Design , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[23]  Frank L. Lewis,et al.  Parameterization of all stabilizing Hinfinity static state-feedback gains: Application to output-feedback design , 2007, Autom..

[24]  Huijun Gao,et al.  I filtering for 2D Markovian jump systems , 2008, Autom..

[25]  Krzysztof Galkowski,et al.  On the control of distributed parameter systems using a multidimensional systems setting , 2008 .

[26]  Oswaldo Luiz V. Costa,et al.  Discrete-time mean variance optimal control of linear systems with Markovian jumps and multiplicative noise , 2009, Int. J. Control.

[27]  D. Peaucelle,et al.  Parametrizing stabilizing controls in stochastic systems , 2009 .

[28]  Ricardo C. L. F. Oliveira,et al.  Robust stability, ℋ2 analysis and stabilisation of discrete-time Markov jump linear systems with uncertain probability matrix , 2009, Int. J. Control.

[29]  Krzysztof Galkowski,et al.  Parametrization based synthesis of static feedback stabilizing controllers for uncertain discrete linear repetitive processes , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[30]  Krzysztof Galkowski,et al.  Experimentally supported 2D systems based iterative learning control law design for error convergence and performance , 2010 .

[31]  S. Cooper,et al.  Remote Control , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).