Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial an

[1]  Heinz H. Bauschke,et al.  Fixed Points of Averages of Resolvents: Geometry and Algorithms , 2011, SIAM J. Optim..

[2]  Heinz H. Bauschke,et al.  The resolvent average for positive semidefinite matrices , 2009, 0910.3705.

[3]  Heinz H. Bauschke,et al.  The kernel average for two convex functions and its application to the extension and representation of monotone operators , 2009 .

[4]  Heinz H. Bauschke,et al.  The Proximal Average: Basic Theory , 2008, SIAM J. Optim..

[5]  D. Russell Luke,et al.  Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..

[6]  Heinz H. Bauschke,et al.  How to Transform One Convex Function Continuously into Another , 2008, SIAM Rev..

[7]  Heinz H. Bauschke,et al.  Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative , 2007 .

[8]  Heinz H. Bauschke,et al.  The asymptotic behavior of the composition of two resolvents , 2005, Nonlinear Analysis: Theory, Methods & Applications.

[9]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[10]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[11]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[12]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[13]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[14]  Patrick L. Combettes,et al.  Inconsistent signal feasibility problems: least-squares solutions in a product space , 1994, IEEE Trans. Signal Process..

[15]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[16]  Charles L. Byrne,et al.  Signal Processing: A Mathematical Approach , 1993 .

[17]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[18]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[19]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[20]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[21]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[22]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[23]  Alvaro R. De Pierro,et al.  From Parallel to Sequential Projection Methods and Vice Versa in Convex Feasibility: Results and Conjectures , 2001 .

[24]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[25]  B. Mercier Inequations variationnelles de la mécanique , 1980 .

[26]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[27]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[28]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .