Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial an
暂无分享,去创建一个
[1] Heinz H. Bauschke,et al. Fixed Points of Averages of Resolvents: Geometry and Algorithms , 2011, SIAM J. Optim..
[2] Heinz H. Bauschke,et al. The resolvent average for positive semidefinite matrices , 2009, 0910.3705.
[3] Heinz H. Bauschke,et al. The kernel average for two convex functions and its application to the extension and representation of monotone operators , 2009 .
[4] Heinz H. Bauschke,et al. The Proximal Average: Basic Theory , 2008, SIAM J. Optim..
[5] D. Russell Luke,et al. Finding Best Approximation Pairs Relative to a Convex and Prox-Regular Set in a Hilbert Space , 2008, SIAM J. Optim..
[6] Heinz H. Bauschke,et al. How to Transform One Convex Function Continuously into Another , 2008, SIAM Rev..
[7] Heinz H. Bauschke,et al. Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative , 2007 .
[8] Heinz H. Bauschke,et al. The asymptotic behavior of the composition of two resolvents , 2005, Nonlinear Analysis: Theory, Methods & Applications.
[9] P. L. Combettes,et al. Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .
[10] Heinz H. Bauschke,et al. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.
[11] Heinz H. Bauschke,et al. Projection and proximal point methods: convergence results and counterexamples , 2004 .
[12] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[13] Heinz H. Bauschke,et al. Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .
[14] Patrick L. Combettes,et al. Inconsistent signal feasibility problems: least-squares solutions in a product space , 1994, IEEE Trans. Signal Process..
[15] Heinz H. Bauschke,et al. On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .
[16] Charles L. Byrne,et al. Signal Processing: A Mathematical Approach , 1993 .
[17] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[18] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[19] W. Cheney,et al. Proximity maps for convex sets , 1959 .
[20] S. Simons. From Hahn-Banach to monotonicity , 2008 .
[21] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[22] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[23] Alvaro R. De Pierro,et al. From Parallel to Sequential Projection Methods and Vice Versa in Convex Feasibility: Results and Conjectures , 2001 .
[24] H. Attouch. A General Duality Principle for the Sum of Two Operators 1 , 1996 .
[25] B. Mercier. Inequations variationnelles de la mécanique , 1980 .
[26] E. H. Zarantonello. Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .
[27] R. Rockafellar. On the maximality of sums of nonlinear monotone operators , 1970 .
[28] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .