Multi-Player Games with LDL Goals over Finite Traces

Abstract Linear Dynamic Logic on finite traces ( LDL F ) is a powerful logic for reasoning about the behaviour of concurrent and multi-agent systems. In this paper, we investigate techniques for both the characterisation and verification of equilibria in multi-player games with goals/objectives expressed using logics based on LDL F . This study builds upon a generalisation of Boolean games, a logic-based game model of multi-agent systems where players have goals succinctly represented in a logical way. Because LDL F goals are considered, in the settings we study—Reactive Modules games and iterated Boolean games with goals over finite traces—players' goals can be defined to be regular properties while achieved in a finite, but arbitrarily large, trace. In particular, using alternating automata, the paper investigates automata-theoretic approaches to the characterisation and verification of (pure strategy Nash) equilibria, shows that the set of Nash equilibria in multi-player games with LDL F objectives is regular, and provides complexity results for the associated automata constructions.

[1]  Sophie Pinchinat,et al.  Emptiness Of Alternating Tree Automata Using Games With Imperfect Information , 2013, FSTTCS.

[2]  Giuseppe Perelli,et al.  Synthesis with rational environments , 2016, Annals of Mathematics and Artificial Intelligence.

[3]  Wojciech Jamroga,et al.  Logics for Reasoning About Strategic Abilities in Multi-player Games , 2015, Models of Strategic Reasoning.

[4]  Orna Kupfermant,et al.  Synthesis with Incomplete Informatio , 2000 .

[5]  Michael Wooldridge,et al.  Rational Verification: From Model Checking to Equilibrium Checking , 2016, AAAI.

[6]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[7]  Dana Fisman,et al.  Rational Synthesis , 2009, TACAS.

[8]  Antonín Kucera,et al.  The stuttering principle revisited , 2005, Acta Informatica.

[9]  Aniello Murano,et al.  Strategy logic with imperfect information , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[10]  Strategy logic , 2010, Inf. Comput..

[11]  Igor Walukiewicz,et al.  Relating Hierarchies of Word and Tree Automata , 1998, STACS.

[12]  Sophie Pinchinat,et al.  Uniform Strategies , 2012, ArXiv.

[13]  Cees Witteveen,et al.  Boolean games , 2001 .

[14]  Alessio Lomuscio,et al.  Decidable Verification of Multi-agent Systems with Bounded Private Actions , 2018, AAMAS.

[15]  Michael Wooldridge,et al.  From model checking to equilibrium checking: Reactive modules for rational verification , 2016, Artif. Intell..

[16]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[17]  M. Wooldridge,et al.  Imperfect Information in Reactive Modules Games , 2016, KR.

[18]  Michael Wooldridge,et al.  On the complexity of practical ATL model checking , 2006, AAMAS '06.

[19]  Michael Wooldridge,et al.  Iterated Boolean games , 2013, Inf. Comput..

[20]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[21]  Thomas A. Henzinger,et al.  MOCHA: Modularity in Model Checking , 1998, CAV.

[22]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[23]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[24]  Giuseppe De Giacomo,et al.  LTLf and LDLf Synthesis under Partial Observability , 2016, IJCAI.

[25]  Michael Wooldridge,et al.  Expresiveness and Complexity Results for Strategic Reasoning , 2015, CONCUR.

[26]  A. P. Monsuwé,et al.  Modeling Strategic Reasoning , 2012 .

[27]  Alessio Lomuscio,et al.  Alternating-time Temporal Logic on Finite Traces , 2018, IJCAI.

[28]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[29]  Marta Z. Kwiatkowska,et al.  PRISM: probabilistic model checking for performance and reliability analysis , 2009, PERV.

[30]  Michael Wooldridge,et al.  Iterated Games with LDL Goals over Finite Traces , 2017, AAMAS.

[31]  Philippe Schnoebelen,et al.  Model Checking a Path , 2003, CONCUR.

[32]  Aniello Murano,et al.  Decidability Results for ATL* with Imperfect Information and Perfect Recall , 2017, AAMAS.

[33]  Aniello Murano,et al.  Reasoning About Strategies: On the Model-Checking Problem , 2011, ArXiv.

[34]  Faron Moller Logics for concurrency: structure versus automata , 1996, CSUR.

[35]  Aniello Murano,et al.  Graded CTL* over Finite Paths , 2018, ICTCS.

[36]  Thomas A. Henzinger,et al.  Reactive Modules , 1999, Formal Methods Syst. Des..

[37]  Giuseppe De Giacomo,et al.  Synthesis for LTL and LDL on Finite Traces , 2015, IJCAI.

[38]  Sophie Pinchinat,et al.  Uniform strategies, rational relations and jumping automata , 2015, Inf. Comput..