Evolving Processes and Evolving Connectionist Systems

In this chapter some working definitions for evolving processes in nature and engineering are given. A working classification scheme of learning in connectionist systems is also presented. Major features of evolving connectionist systems such as on-line learning, adaptive learning, life-long learning, supervised/ unsupervised/ reinforcement learning, knowledge-based learning, statistical learning, open structure and others are defined and illustrated.

[1]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[2]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[3]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[4]  James A. Hendler,et al.  Integrating Neural Network and Expert Reasoning: An Example , 1991 .

[5]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Edward E. Smith,et al.  Categories and concepts , 1984 .

[7]  E. de Boer,et al.  On cochlear encoding: Potentialities and limitations of the reverse‐correlation technique , 1978 .

[8]  J. McCauley Chaos, dynamics, and fractals : an algorithmic approach to deterministic chaos , 1993 .

[9]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[10]  Nikola Kasabov,et al.  Improved learning strategies for multimodular fuzzy neural network systems: a case study on image classification , 1996 .

[11]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[12]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[13]  Yiannis Aloimonos,et al.  Artificial intelligence - theory and practice , 1995 .

[14]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[15]  B. Kosko Fuzzy systems as universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[16]  Michael Arbib,et al.  From Vision to Action via Distributed Computation , 1997 .

[17]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[18]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[19]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[20]  Lokendra Shastri,et al.  Incremental class learning approach and its application to handwritten digit recognition , 2002, Inf. Sci..

[21]  Anthony V. Robins,et al.  Consolidation in Neural Networks and in the Sleeping Brain , 1996, Connect. Sci..

[22]  W. Freeman The physiology of perception. , 1991, Scientific American.

[23]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[24]  L. Medsker,et al.  Design and development of hybrid neural network and expert systems , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[25]  Jerome A. Feldman Structured neural networks in nature and in computer science , 1988 .

[26]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[27]  M. Arbib Brains, Machines, and Mathematics , 1987, Springer US.

[28]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[29]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[30]  Alan R. White THE NATURE OF KNOWLEDGE , 2019, Faith in Life.

[31]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[32]  Geoffrey E. Hinton Connectionist Symbol Processing , 1991 .

[33]  James Gleick Chaos: Making a New Science , 1987 .

[34]  Igor Aleksander,et al.  Neural computing architectures: the design of brain-like machines , 1989 .

[35]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[36]  Michael A. Arbib,et al.  The metaphorical brain : an introduction to cybernetics as artificial intelligence and brain theory , 1972 .

[37]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[38]  John A. Barnden,et al.  Encoding techniques for complex information structures in connectionist systems , 1991 .

[39]  Nikola Kasabov,et al.  Brain-like Computing and Intelligent Information Systems , 1998 .

[40]  David Saad,et al.  On-Line Learning in Neural Networks , 1999 .

[41]  Yoichi Hayashi,et al.  A Neural Expert System with Automated Extraction of Fuzzy If-Then Rules , 1990, NIPS.

[42]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[43]  Jude W. Shavlik,et al.  Training Knowledge-Based Neural Networks to Recognize Genes , 1990, NIPS.

[44]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[45]  F C Hoppensteadt,et al.  Intermittent chaos, self-organization, and learning from synchronous synaptic activity in model neuron networks. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Volker Tresp,et al.  Network Structuring and Training Using Rule-Based Knowledge , 1992, NIPS.

[47]  R. Eckmiller,et al.  Neural Computers , 1989, Springer Study Edition.

[48]  Andreas Ziehe,et al.  Adaptive On-line Learning in Changing Environments , 1996, NIPS.

[49]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[50]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[51]  Morris W. Firebaugh,et al.  Artificial intelligence: a knowledge-based approach , 1988 .

[52]  John G. Taylor The race for consciousness , 1999 .