Interaction potentials for Br(2p) + Ar, Kr, Xe (1s) by the crossed molecular beams method. Interim report

Angular distributions of Br((2)P sub 3/2, 1/2) scattered off Ar, Kr, and Xe ((1) S sub 0) in the thermal energy range were measured in crossed molecular beams experiments. Interaction potentials for the X(1/2) and I(3/2) states are derived by using an approximate elastic scattering analysis, which neglects interstate coupling, as previously done for F-Xe,Kr,Ar,Ne and C1-Xe. While the Br-Xe X(1/2) potential (epsilon = 0.645 kcal/mole, r sub m = 3.80 A) shows a stronger interaction than the interaction potential of Kr-Xe, the Br-Kr (epsilon = 0.460 kcal/mole, r sub m = 3.90 A) and Br-Ar (epsilon = 0.380 kcal/mole, r sub m = 3.73 A) X(1/2) potentials are closer to those of the corresponding rare gas pairs. The I(3/2) potential for all three systems is found to have a shallower epsilon, a slightly larger r sub m and a more repulsive wall than the 1(Sigma +) potential of the corresponding rare gas pair. The origin of these interactions is discussed and an attempt to examine the rare gas halides ground state bonding is presented.

[1]  D. Ehrlich,et al.  Formation of the XeBr exciplex by Xe–Br2 (D′) collisions , 1980 .

[2]  V. Aquilanti,et al.  Decoupling approximations in the quantum mechanical treatment of P‐state atom collisions , 1980 .

[3]  Vincenzo Aquilanti,et al.  Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions , 1980 .

[4]  V. Aquilanti,et al.  Scattering of magnetically selected O(3P) atoms: Characterization of the low lying states of the heavy rare gas oxides , 1980 .

[5]  J. Tellinghuisen,et al.  Energy ordering of the B and C states in XeCl, XeBr, and KrCl, from temperature dependence of emission spectra , 1980 .

[6]  M. Golde,et al.  Chemiluminescence of argon bromide. I. The emission spectrum of ArBr , 1980 .

[7]  R. Smalley,et al.  Rotational and vibrational analysis of the ?←? system of XeF as observed in a supersonic free jet , 1979 .

[8]  W. R. Wadt,et al.  Theoretical Studies of Molecular Electronic Transition Lasers , 1979 .

[9]  W. Lester,et al.  Coupled‐channel study of halogen (2P) + rare gas (1S) scattering , 1979 .

[10]  R. J. Boyd Halogen recombination: dissociation reactions. Current status , 1979 .

[11]  Richard B. Bernstein,et al.  Atom - Molecule Collision Theory , 1979 .

[12]  S. Sibener,et al.  Crossed molecular beam studies on the interaction potential for F(2P)+Xe(1S) , 1978 .

[13]  M. Golde,et al.  Emission spectra of the noble-gas halides: the B12A12 system , 1978 .

[14]  P. Hay,et al.  The covalent and ionic states of the xenon halides , 1978 .

[15]  D. Huestis,et al.  Energy ordering of the excited states of XeF , 1978 .

[16]  J. Velazco,et al.  Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for the X, B, and D states of XeF , 1978 .

[17]  C. Bottcher,et al.  Collisions between sodium atoms and nitrogen molecules: rotational excitation and fine-structure-changing collisions , 1978 .

[18]  P. C. Kobrinsky,et al.  Flash photolysis absorption spectroscopy of xenon fluoride: Vibrational analysis of the B-X transition☆ , 1978 .

[19]  M. Coggiola,et al.  Supersonic atomic and molecular halogen nozzle beam source , 1977 .

[20]  W. Kutzelnigg Quantum chemical calculation of intermolecular interaction potentials, mainly of van-der-Waals type , 1977 .

[21]  G. Tisone,et al.  Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF , 1976 .

[22]  M. Krauss,et al.  The energy curve of XeF, X 2Σ+ , 1976 .

[23]  L. Andrews,et al.  Absorption and emission spectra of matrix‐isolated XeF, KrF, XeCl, and XeBr , 1976 .

[24]  Wilfried Meyer,et al.  Finite perturbation calculation for the static dipole polarizabilities of the atoms Na through Ca , 1976 .

[25]  J. Murray,et al.  KrCl laser oscillation at 222 nm , 1976 .

[26]  G. Tisone,et al.  Spectroscopic studies of diatomic noble gas halides: Analysis of spontaneous and stimulated emission from XeCl , 1976 .

[27]  H. Werner,et al.  Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms , 1976 .

[28]  J. J. Ewing,et al.  Emission spectra of XeBr, XeCl, XeF, and KrF , 1975 .

[29]  R. Berry,et al.  Theory of Elementary Atomic and Molecular Processes in Gases , 1975 .

[30]  M. Golde Interpretation of the oscillatory spectra of the inert-gas halides , 1975 .

[31]  J. Velazco,et al.  Bound–free emission spectra of diatomic xenon halides , 1975 .

[32]  J. A. Barker,et al.  Interatomic potentials for krypton and xenon , 1974 .

[33]  James S. Cohen,et al.  Modified statistical method for intermolecular potentials. Combining rules for higher van der Waals coefficients , 1974 .

[34]  W. Miller,et al.  Semiclassical theory of collisionally induced fine‐structure transitions in fluorine atoms , 1974 .

[35]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[36]  W. Wong,et al.  Trajectory studies of atomic recombination reactions. V. Recombination of bromine atoms , 1973 .

[37]  M. Karplus,et al.  Perturbation theory and ionic models for alkali halide systems. I Diatomics , 1973 .

[38]  D. Truhlar Multiple Potential Energy Surfaces for Reactions of Species in Degenerate Electronic States , 1972 .

[39]  Charlotte Froese Fischer,et al.  Average-energy-of-configuration Hartree-Fock results for the atoms helium to radon charlotte froese fischer , 1972 .

[40]  R. T. Pack,et al.  The static dipole polarizabilities of all the neutral atoms in their ground states , 1971 .

[41]  J. D. Mcdonald,et al.  Molecular Beam Reactive Scattering Apparatus with Electron Bombardment Detector , 1969 .

[42]  D. L. Bunker Theory of Elementary Gas Reaction Rates , 1966 .

[43]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .