A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

Gyarfas et?al. and Zaker have proven that the Grundy number of a graph G satisfies ? ( G ) ? t if and only if G contains an induced subgraph called a t -atom. The family of t -atoms has bounded order and contains a finite number of graphs. In this article, we introduce equivalents of t -atoms for b-coloring and partial Grundy coloring. This concept is used to prove that determining if ? ( G ) ? t and ? ? ( G ) ? t (under conditions for the b-coloring), for a graph G , is in XP with parameter t . We illustrate the utility of the concept of t -atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 7.

[1]  Manouchehr Zaker,et al.  Results on the Grundy chromatic number of graphs , 2006, Discret. Math..

[2]  Zoltán Király,et al.  On-line 3-chromatic graphs - II critical graphs , 1997, Discret. Math..

[3]  Ludek Kucera,et al.  Revised Papers from the 28th International Workshop on Graph-Theoretic Concepts in Computer Science , 2002 .

[4]  Sergio Cabello,et al.  On the b-chromatic number of regular graphs , 2011, Discret. Appl. Math..

[5]  Sandi Klavzar,et al.  The b-Chromatic Number of Cubic Graphs , 2010, Graphs Comb..

[6]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[7]  Mekkia Kouider,et al.  On the b-coloring of tight graphs , 2017, J. Comb. Optim..

[8]  Chính T. Hoàng,et al.  On the b-dominating coloring of graphs , 2005, Discret. Appl. Math..

[9]  Hamamache Kheddouci,et al.  The b-chromatic number of power graphs , 2003, Discret. Math. Theor. Comput. Sci..

[10]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[11]  Noureddine Ikhlef Eschouf,et al.  ON VERTEX b-CRITICAL TREES , 2013 .

[12]  Eureka Team,et al.  How donated blood is tested: An interview with Canadian Blood Services , 2011 .

[13]  Leonardo Sampaio Rocha,et al.  Algorithmic aspects of graph colouring heuristics , 2012 .

[14]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .

[15]  Noureddine Ikhlef Eschouf Characterization of some b-chromatic edge critical graphs , 2010, Australas. J Comb..

[16]  Chính T. Hoàng,et al.  A Characterization of b‐Perfect Graphs , 2010, J. Graph Theory.

[17]  Paul Erdös,et al.  On the equality of the partial Grundy and upper ochromatic numbers of graphs , 2003, Discret. Math..

[18]  Frédéric Maffray,et al.  B-coloring of Some Bipartite Graphs , 2012, Australas. J Comb..

[19]  Chính T. Hoàng,et al.  On minimally b-imperfect graphs , 2009, Discret. Appl. Math..

[20]  Johanne Cohen,et al.  On the b-continuity property of graphs , 2007, Discret. Appl. Math..

[21]  Frédéric Maffray,et al.  On edge-b-critical graphs , 2015, Discret. Appl. Math..

[22]  Frédéric Maffray,et al.  b-colouring the Cartesian product of trees and some other graphs , 2013, Discret. Appl. Math..

[23]  Ana Silva,et al.  Graphs of girth at least 7 have high b-chromatic number , 2015, Eur. J. Comb..

[24]  Saeed Shaebani,et al.  On the b-chromatic number of regular graphs without 4-cycle , 2011, Discret. Appl. Math..

[25]  S. Francis Raj,et al.  Bounds for the b-chromatic number of G-v , 2013, Discret. Appl. Math..

[26]  Mekkia Kouider,et al.  On the b-coloring of G-e , 2015, Discret. Appl. Math..