De Novo Infection and Serial Transmission of Kaposi's Sarcoma-Associated Herpesvirus in Cultured Endothelial Cells

ABSTRACT Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is central to the pathogenesis of the endothelial neoplasm Kaposi's sarcoma (KS) and is also linked to the rare B-cell tumor known as primary effusion lymphoma (PEL). Latently infected PEL cell lines can be induced to enter the lytic cycle and produce KSHV virions. However, such cells do not support de novo infection or serial propagation of KSHV. These limitations have prevented the development of systems for the genetic analysis of KSHV and have impeded a deeper understanding of KS pathogenesis. Here we show that human dermal microvascular endothelial cells immortalized by expression of telomerase can be readily infected by KSHV virions produced by PEL cells. Infection is predominantly latent, but a small subpopulation enters the lytic cycle spontaneously. Phorbol ester (tetradecanoyl phorbol acetate [TPA]) treatment of latently infected cells leads to enhanced induction of lytic KSHV replication, resulting in foci of cytopathic effect. There is no cytopathic effect or viral DNA expansion when infected TIME cells (telomerase-immortalized microvascular endothelial cells) are TPA induced in the presence of phosphonoacetic acid (PAA), an inhibitor of herpesvirus replication. Supernatants from phorbol-induced cultures transfer latent KSHV infection to uninfected cells, which can likewise be induced to undergo lytic replication by TPA treatment, and the virus can be further serially transmitted. Serial passage of the virus in TIME cells is completely inhibited when TPA treatment is done in the presence of PAA. Latently infected endothelial cells do not undergo major morphological changes or growth transformation, and infection is lost from the culture upon serial passage. This behavior faithfully recapitulates the behavior of spindle cells explanted from primary KS biopsies, strongly supporting the biological relevance of this culture system. These findings suggest that either the stability or the growth-deregulatory potential of the KSHV latency program in endothelial cells is more limited than might be predicted by analogy with other oncogenic viruses.

[1]  T. Tlsty,et al.  Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. , 2002, Experimental cell research.

[2]  Frederick Y. Wu,et al.  Spindle Cell Conversion by Kaposi's Sarcoma-Associated Herpesvirus: Formation of Colonies and Plaques with Mixed Lytic and Latent Gene Expression in Infected Primary Dermal Microvascular Endothelial Cell Cultures , 2001, Journal of Virology.

[3]  M. Borowitz,et al.  A New Primary Effusion Lymphoma-Derived Cell Line Yields a Highly Infectious Kaposi's Sarcoma Herpesvirus-Containing Supernatant , 2000, Journal of Virology.

[4]  Sarah Nikiforow,et al.  Kaposi's Sarcoma-Associated Herpesvirus Open Reading Frame 50/Rta Protein Activates the Entire Viral Lytic Cycle in the HH-B2 Primary Effusion Lymphoma Cell Line , 2000, Journal of Virology.

[5]  E. Robertson,et al.  The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. , 1999, Virology.

[6]  Andrea Bodnar,et al.  Human Endothelial Cell Life Extension by Telomerase Expression* , 1999, The Journal of Biological Chemistry.

[7]  B. Chandran,et al.  Long-Term Infection and Transformation of Dermal Microvascular Endothelial Cells by Human Herpesvirus 8 , 1999, Journal of Virology.

[8]  J. Orenstein,et al.  Identification and Rapid Quantification of Early- and Late-Lytic Human Herpesvirus 8 Infection in Single Cells by Flow Cytometric Analysis: Characterization of Antiherpesvirus Agents , 1999, Journal of Virology.

[9]  A. Haase,et al.  Expression of the Open Reading Frame 74 (G-Protein-Coupled Receptor) Gene of Kaposi’s Sarcoma (KS)-Associated Herpesvirus: Implications for KS Pathogenesis , 1999, Journal of Virology.

[10]  M. Ballestas,et al.  Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. , 1999, Science.

[11]  A. Palestine,et al.  Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. , 1999, The New England journal of medicine.

[12]  D. Ganem,et al.  Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. , 1998, Virology.

[13]  R. Sun,et al.  A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Rafii,et al.  Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus , 1998, Nature.

[15]  D. Ganem,et al.  Limited Transmission of Kaposi’s Sarcoma-Associated Herpesvirus in Cultured Cells , 1998, Journal of Virology.

[16]  B. Ensoli,et al.  Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. , 1998, Cytokine & growth factor reviews.

[17]  D. Ganem,et al.  Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. , 1997, The Journal of clinical investigation.

[18]  D. Ganem,et al.  The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. , 1997, Virology.

[19]  L. Rainbow,et al.  The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen , 1997, Journal of virology.

[20]  G. Millot,et al.  Characterization of in vitro culture of HIV-negative Kaposi’s sarcoma-derived cells. In vitro responses to alfa interferon , 1997, Archives of Dermatological Research.

[21]  R. Greenblatt,et al.  The prevalence of serum antibody to human herpesvirus 8 (Kaposi sarcoma-associated herpesvirus) among HIV-seropositive and high-risk HIV-seronegative women. , 1997, JAMA.

[22]  G. Nabel,et al.  Propagation of a human herpesvirus from AIDS-associated Kaposi's sarcoma. , 1997, The New England journal of medicine.

[23]  A. Haase,et al.  Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells , 1997, Journal of virology.

[24]  D. Noonan,et al.  KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi's sarcoma. , 1996, Research in virology.

[25]  E. Operskalski,et al.  The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma–associated herpesvirus): Distribution of infection in KS risk groups and evidence for sexual transmission , 1996, Nature Medicine.

[26]  J. Phair,et al.  KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma , 1996, Nature Medicine.

[27]  J. Phair,et al.  Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. , 1996, The New England journal of medicine.

[28]  N. Bendsøe,et al.  Human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) DNA in Kaposi's sarcoma lesions, AIDS Kaposi's sarcoma cell lines, endothelial Kaposi's sarcoma simulators, and the skin of immunosuppressed patients. , 1996, The American journal of pathology.

[29]  R. Sun,et al.  Antibodies to butyrate-inducible antigens of Kaposi's sarcoma-associated herpesvirus in patients with HIV-1 infection. , 1996, The New England journal of medicine.

[30]  M. McGrath,et al.  Lytic growth of Kaposi's sarcoma–associated herpesvirus (human herpesvirus 8) in culture , 1996, Nature Medicine.

[31]  E. Cesarman,et al.  Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. , 1994, Science.

[32]  J. Levy,et al.  Characterization of a human Kaposi's sarcoma cell line that induces angiogenic tumors in animals , 1994, AIDS.

[33]  C. Guguen-Guillouzo,et al.  Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus: effect of polyethylene glycol on adsorption and penetration. , 1993, Virology.

[34]  R. Gallo,et al.  Cytokines and Growth Factors in the Pathogenesis of AIDS‐Associated Kaposi's Sarcoma , 1992, Immunological reviews.

[35]  S. Nakamura,et al.  AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. , 1989, Science.