AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment Optical Coherence Tomography

[1]  H G SCHEIE,et al.  Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy. , 1957, A.M.A. archives of ophthalmology.

[2]  Victor Eijkhout,et al.  The bag of tricks , 1992 .

[3]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[4]  G. Johnson,et al.  The Burden of Trachoma in the Rural Nile Delta of Egypt : a Survey of Menofiya Governorate The Epidemiology of Ocular Trauma in Singapore : Perspective from the Emergency Service of a Large Tertiary Hospital , 2005 .

[5]  M. Morales i Ballús,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006 .

[6]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[7]  D. Friedman,et al.  Quantitative analysis of anterior segment optical coherence tomography images: the Zhongshan Angle Assessment Program , 2008, British Journal of Ophthalmology.

[8]  Tin Aung,et al.  Assessment of the scleral spur in anterior segment optical coherence tomography images. , 2008, Archives of ophthalmology.

[9]  D. Friedman,et al.  Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. , 2008, Ophthalmology.

[10]  J. Myers,et al.  Comparison of Gonioscopy and Anterior Segment Ocular Coherence Tomography in Detecting Angle Closure in Different Quadrants of the Anterior Chamber Angle , 2009 .

[11]  Jing Tian,et al.  Automatic Anterior Chamber Angle Assessment for HD-OCT Images , 2011, IEEE Transactions on Biomedical Engineering.

[12]  Jiang Liu,et al.  Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  Jiang Liu,et al.  Automated anterior chamber angle localization and glaucoma type classification in OCT images , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[14]  Karen O. Egiazarian,et al.  Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction , 2013, IEEE Transactions on Image Processing.

[15]  Tin Aung,et al.  Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure. , 2013, Ophthalmology.

[16]  Neha Chaturvedi,et al.  Application of anterior segment optical coherence tomography in glaucoma. , 2014, Survey of ophthalmology.

[17]  K. Borgwardt,et al.  Machine Learning in Medicine , 2015, Mach. Learn. under Resour. Constraints Vol. 3.

[18]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[19]  Huazhu Fu,et al.  Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Hiroshi Murata,et al.  Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. , 2016, Ophthalmology.

[22]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[23]  Weisi Lin,et al.  Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification , 2016, Comput. Methods Programs Biomed..

[24]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[25]  Elad Eban,et al.  Scalable Learning of Non-Decomposable Objectives , 2016, AISTATS.

[26]  Rishab Gargeya,et al.  Automated Identification of Diabetic Retinopathy Using Deep Learning. , 2017, Ophthalmology.

[27]  Tin Aung,et al.  Association of Baseline Anterior Segment Parameters With the Development of Incident Gonioscopic Angle Closure , 2017, JAMA ophthalmology.

[28]  Alejandro F. Frangi,et al.  Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT , 2017, IEEE Transactions on Medical Imaging.

[29]  E. Finkelstein,et al.  Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes , 2017, JAMA.

[30]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  A. Peters,et al.  A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. , 2018, Ophthalmology.

[32]  Gang Yu,et al.  Cascaded Pyramid Network for Multi-person Pose Estimation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[34]  Amir Sadeghipour,et al.  Artificial intelligence in retina , 2018, Progress in Retinal and Eye Research.

[35]  Huazhu Fu,et al.  DeepAMD: Detect Early Age-Related Macular Degeneration by Applying Deep Learning in a Multiple Instance Learning Framework , 2018, ACCV.

[36]  Thomas Brox,et al.  U-Net: deep learning for cell counting, detection, and morphometry , 2018, Nature Methods.

[37]  Xiaochun Cao,et al.  Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation , 2018, IEEE Transactions on Medical Imaging.

[38]  M. Abràmoff,et al.  Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices , 2018, npj Digital Medicine.

[39]  Xiaochun Cao,et al.  Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image , 2018, IEEE Transactions on Medical Imaging.

[40]  Aaron Carass,et al.  Why rankings of biomedical image analysis competitions should be interpreted with care , 2018, Nature Communications.

[41]  Jonathan Krause,et al.  Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy , 2017, Ophthalmology.

[42]  Stephen Lin,et al.  Multi-context Deep Network for Angle-Closure Glaucoma Screening in Anterior Segment OCT , 2018, MICCAI.

[43]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[44]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[45]  D. Hood,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[46]  Leopold Schmetterer,et al.  Anterior segment optical coherence tomography , 2018, Progress in Retinal and Eye Research.

[47]  Prin Rojanapongpun,et al.  Anterior Segment Imaging for Angle Closure. , 2018, American journal of ophthalmology.

[48]  M. He,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[49]  Stephen Lin,et al.  A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. , 2019, American journal of ophthalmology.

[50]  Shihao Zhang,et al.  Attention Guided Network for Retinal Image Segmentation , 2019, MICCAI.

[51]  Jeffrey Dean,et al.  Machine Learning in Medicine , 2019, The New England journal of medicine.

[52]  Zhi Zhang,et al.  Bag of Tricks for Image Classification with Convolutional Neural Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Raymond Y Huang,et al.  Artificial intelligence in cancer imaging: Clinical challenges and applications , 2019, CA: a cancer journal for clinicians.

[54]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[55]  L. Peng,et al.  Deep learning in ophthalmology: The technical and clinical considerations , 2019, Progress in Retinal and Eye Research.

[56]  Yifan Peng,et al.  DeepSeeNet: A deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs , 2018, Ophthalmology.

[57]  Chi-Wing Fu,et al.  Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation , 2019, IEEE Transactions on Medical Imaging.

[58]  Rohit Varma,et al.  Deep Learning Classifiers for Automated Detection of Gonioscopic Angle Closure Based on Anterior Segment OCT Images. , 2019, American journal of ophthalmology.

[59]  Huazhu Fu,et al.  Anterior Chamber Angles Classification in Anterior Segment OCT Images via Multi-Scale Regions Convolutional Neural Networks , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[60]  Huazhu Fu,et al.  Reconstruction and Quantification of 3D Iris Surface for Angle-Closure Glaucoma Detection in Anterior Segment OCT , 2020, MICCAI.

[61]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Xiaoxiao Li,et al.  REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs , 2019, Medical Image Anal..

[63]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Stephen Lin,et al.  Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network , 2019, IEEE Transactions on Cybernetics.

[65]  Huazhu Fu,et al.  Open-Narrow-Synechiae Anterior Chamber Angle Classification in AS-OCT Sequences , 2020, ArXiv.

[66]  Kai Zhao,et al.  Res2Net: A New Multi-Scale Backbone Architecture , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.