SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata

SPOT (SPOT produces our traces), is a C++ library offering model checking bricks that can be combined and interfaced with third party tools to build a model checker. It relies on transition-based generalized Bu/spl uml/chi automata (TGBA) and does not need to degeneralize these automata to check their emptiness. We motivate the choice of TGBA by illustrating a very simple (yet efficient) translation of LTL (linear temporal logic) into TGBA. We then show how it supports on-the-fly computations, and how it can be extended or integrated in other tools.

[1]  Heikki Tauriainen,et al.  ON TRANSLATING LINEAR TEMPORAL LOGIC INTO ALTERNATING AND NONDETERMINISTIC AUTOMATA , 2003 .

[2]  Pierre Wolper,et al.  The tableau method for temporal logic: an overview , 1985 .

[3]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[4]  Roberto Sebastiani,et al.  "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.

[5]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[6]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[7]  Mauno Rönkkö,et al.  LBT: LTL to Büchi conversion , 2001 .

[8]  Denis Poitrenaud,et al.  A Symbolic Symbolic State Space Representation , 2004, FORTE.

[9]  Kais Klai,et al.  Design and Evaluation of a Symbolic and Abstraction-Based Model Checker , 2004, ATVA.

[10]  Heikki Tauriainen A Randomized Testbench for Algorithms Translating Linear Temporal Logic Formulae into B1chi Automat , 1999 .

[11]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[12]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[13]  Laurent Pautet,et al.  Refining Middleware Functions for Verification Purpose , 2003 .

[14]  Orna Grumberg,et al.  Verification of Temporal Properties , 1993, J. Log. Comput..

[15]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[16]  Max Michel Algebre de machines et logique temporelle , 1984, STACS.

[17]  Souheib Baarir,et al.  Exploiting partial symmetries in well-formed nets for the reachability and the linear time model checking problems , 2004 .

[18]  Kais Klai Réseaux de Petri : vérification symbolique et modulaire , 2003 .

[19]  Xavier Thirioux Simple and Efficient Translation from LTL Formulas to Buchi Automata , 2002, Electron. Notes Theor. Comput. Sci..

[20]  Mihalis Yannakakis,et al.  On nested depth first search , 1996, The Spin Verification System.

[21]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.

[22]  Dimitra Giannakopoulou,et al.  From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata , 2002, FORTE.

[23]  Isabelle Mounier,et al.  Automatic Symmetry Detection in Well-Formed Nets , 2003, ICATPN.

[24]  Giovanni Chiola,et al.  A Symbolic Reachability Graph for Coloured Petri Nets , 1997, Theor. Comput. Sci..