Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6

We studied the interior and the fusion crust of the recently recovered Ozerki L6 meteorite using optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy, X‐ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The phase composition of the interior and of the fusion crust was determined by means of SEM, XRD, and Mössbauer spectroscopy. The unit cell parameters for silicate crystals were evaluated from the X‐ray diffractograms and were found the same for the interior and the fusion crust. Magnetization measurements revealed a decrease of the saturation magnetic moment in the fusion crust due to a decrease of Fe‐Ni‐Co alloy content. Both XRD and Mössbauer spectroscopy show the presence of magnesioferrite in the fusion crust. The temperatures of cation equilibrium distribution between the M1 and M2 sites in silicates calculated using the data obtained from XRD and Mössbauer spectroscopy appeared to be in a good consistency: 553 and 479 K for olivine and 1213 and 1202 K for orthopyroxene.

[1]  A. Chukin,et al.  Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[2]  M. Oshtrakh,et al.  Ordinary chondrites: What can we learn using Mössbauer spectroscopy? , 2019, Journal of Molecular Structure.

[3]  A. Chukin,et al.  An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy , 2018, Journal of Molecular Structure.

[4]  A. Chukin,et al.  Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  P. Duda,et al.  Mössbauer spectroscopy—a useful method for classification of meteorites? , 2017 .

[6]  A. A. Maksimova,et al.  Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  J. Cadogan,et al.  An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001 , 2017 .

[8]  M. Oshtrakh,et al.  Mössbauer spectroscopy with a high velocity resolution: Principles and applications , 2016 .

[9]  Z. Homonnay,et al.  Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite , 2016 .

[10]  M. Gritsevich,et al.  Implications of the atmospheric density profile in the processing of fireball observations , 2016 .

[11]  Z. Homonnay,et al.  Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[12]  M. Oshtrakh,et al.  Study of Chelyabinsk LL5 meteorite fragment with a light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[13]  Z. Homonnay,et al.  A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution , 2014 .

[14]  B. Weiss,et al.  Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history , 2014 .

[15]  V. A. Semionkin,et al.  Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  D. Moule,et al.  Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 2012 .

[17]  P. Rochette,et al.  Low temperature magnetic transition of chromite in ordinary chondrites , 2011 .

[18]  O. Milder,et al.  A high velocity resolution Mössbauer spectrometric system for biomedical research , 2010 .

[19]  O. Milder,et al.  Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research , 2009 .

[20]  V. A. Semionkin,et al.  A study of ordinary chondrites by Mössbauer spectroscopy with high‐velocity resolution , 2008 .

[21]  Youxue Zhang,et al.  Fe-Mg order-disorder in orthopyroxenes , 2005 .

[22]  C. Brinkmann,et al.  Octahedral cation partitioning in Mg,Fe 2+ -olivine. Mössbauer spectroscopic study of synthetic (Mg 0.5 Fe 2+ 0.5 ) 2 SiO 4 (Fa 50 ) , 2005 .

[23]  H. McSween,et al.  Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry , 2005 .

[24]  R. P. Tripathi,et al.  Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite , 2004 .

[25]  R. P. Tripathi,et al.  Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur, India , 2003 .

[26]  S. Klemme,et al.  Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures , 2003 .

[27]  R. P. Tripathi,et al.  Mössbauer Spectroscopic Studies of an Oxidized Ordinary Chondrite Fallen at Itawa-Bhopji, India , 2002 .

[28]  R. P. Tripathi,et al.  Classification of the Didwana‐Rajod meteorite: A Mössbauer spectroscopic study , 2000 .

[29]  M. Zema,et al.  Order-disorder kinetics in orthopyroxene with exsolution products , 1999 .

[30]  A. Kirfel,et al.  Temperature dependence of Fe,Mg partitioning in Acapulco olivine , 1999 .

[31]  A. Rubin Mineralogy of meteorite groups , 1997 .

[32]  M. Ghiorso,et al.  An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels , 1991 .

[33]  E. Grave,et al.  A Mössbauer effect study of MgFe2O4 , 1979 .