The acoustic signatures of cavitation erosion on grade DH36 steel

Cavitation can cause considerable erosion to adjacent materials. Erosion is accompanied by acoustic emissions, related to crack formation and propagation inside the material. In this study a piezoelectric acoustic sensor mounted on the back of a grade DH36 steel plate is used to identify the acoustic signatures of cavitation. Cavitation is induced near the plate by means of an ultrasonic transducer (sonotrode). Various 'non-erosive' and erosive test rig configurations are examined and an acoustic threshold value for the onset of cavitation erosion is identified and presented. The use of a fibre Bragg grating (FBG)-based acoustic sensor developed at City University London for acoustic monitoring purposes is also examined. Acoustic signals from both sensors are analysed, by means of a fast Fourier transform, showing a very good agreement in terms of captured frequencies.