A medium-entropy perovskite oxide La0.7Sr0.3Co0.25Fe0.25Ni0.25Mn0.25O3-δ as intermediate temperature solid oxide fuel cells cathode material

[1]  Shao-Long Wang,et al.  The effect of Fe2O3 sintering aid on Gd0.1Ce0.9O1.95 diffusion barrier layer and solid oxide fuel cell performance , 2023, International Journal of Hydrogen Energy.

[2]  Zheng Wang,et al.  High‐Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications , 2023, Small methods.

[3]  Shao‐Yu Wang,et al.  Oxygen permeation properties of Bi-doped La0.8Sr0.2FeO3-δ planar ceramic membranes at intermediate temperature , 2022, Separation and Purification Technology.

[4]  Xiqiang Huang,et al.  A SrCo0.9Ta0.1O3-δ derived medium-entropy cathode with superior CO2 poisoning tolerance for solid oxide fuel cells , 2022, Journal of Power Sources.

[5]  M. A. S.A.,et al.  A Review on the Process-Structure-Performance of Lanthanum Strontium Cobalt Ferrite Oxide for Solid Oxide Fuel Cells Cathodes , 2022, International Journal of Integrated Engineering.

[6]  Yang Yang,et al.  Enhanced Performance of La0.8Sr0.2FeO3-δ-Gd0.2Ce0.8O2-δ Cathode for Solid Oxide Fuel Cells by Surface Modification with BaCO3 Nanoparticles , 2022, Micromachines.

[7]  E. R. Losilla,et al.  A review on recent advances and trends in symmetrical electrodes for solid oxide cells , 2022, Journal of Power Sources.

[8]  Yang Yang,et al.  An interesting application-oriented design of high-strength anode support for protonic ceramic fuel cells by a non-proton-conducting cermet , 2022, Journal of Power Sources.

[9]  A. Deepi,et al.  Component fabrication techniques for solid oxide fuel cell (SOFC) – A comprehensive review and future prospects , 2022, International Journal of Green Energy.

[10]  A. Trukhanov,et al.  Impact of the A-site rare-earth ions (Ln3+ – Sm3+, Eu3+, Gd3+) on structure and electrical properties of the high entropy LnCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskites , 2021, Ceramics International.

[11]  C. Flox,et al.  Two orders of magnitude enhancement in oxygen evolution reactivity of La0.7Sr0.3Fe1−xNixO3− by improving the electrical conductivity , 2021, Nano Energy.

[12]  Aznan Fazli Ismail,et al.  Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application , 2021, International Journal of Hydrogen Energy.

[13]  N. Ni,et al.  Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes , 2021 .

[14]  Sun Liping,et al.  A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells , 2021, Journal of Alloys and Compounds.

[15]  Hojae Lee,et al.  Lowering the sintering temperature of a gadolinia-doped ceria functional layer using a layered Bi2O3 sintering aid for solid oxide fuel cells , 2021, Ceramics International.

[16]  A. Nechache,et al.  Alternative and innovative solid oxide electrolysis cell materials: A short review , 2021 .

[17]  D. Tian,et al.  A high-entropy perovskite cathode for solid oxide fuel cells , 2021 .

[18]  D. Liu,et al.  B-site La, Ce, and Pr-doped Ba0.5Sr0.5Co0.7Fe0.3O3- perovskite cathodes for intermediate-temperature solid oxide fuel cells: Effectively promoted oxygen reduction activity and operating stability , 2021 .

[19]  J. MacManus‐Driscoll,et al.  A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells , 2021, Nature communications.

[20]  Zheng Jiang,et al.  Sr doping effect on the structure property and NO oxidation performance of dual-site doped perovskite La(Sr)Co(Fe)O3 , 2021 .

[21]  B. Lin,et al.  A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0·8Sr0·2MnO3-δ cathode , 2021, Journal of Power Sources.

[22]  Y. Hu,et al.  Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels , 2020 .

[23]  Manfred Martin,et al.  An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method , 2020, Journal of Materials Chemistry A.

[24]  Shi-ze Yang,et al.  Room-temperature Synthesis of High-entropy Perovskite Oxide Nanoparticle Catalysts via Ultrasonication-based Method. , 2019, ChemSusChem.

[25]  S. Jiang,et al.  Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review , 2019, International Journal of Hydrogen Energy.

[26]  Jun Kyu Kim,et al.  Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists , 2018, Joule.

[27]  H Zhao,et al.  A novel family of Nb-doped Bi 0.5 Sr 0.5 FeO 3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells , 2017 .

[28]  S. Jiang,et al.  Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells , 2016 .

[29]  Giovanni Dotelli,et al.  Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review , 2015 .

[30]  G. Dotelli,et al.  Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC , 2015 .

[31]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[32]  Jian Xin Wang,et al.  A novel composite cathode La0.6Sr0.4CoO3−δ–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for intermediate temperature solid oxide fuel cells , 2015 .

[33]  Guntae Kim,et al.  The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells , 2012 .

[34]  Xiaoxiang Xu,et al.  On the Existence of A‐Site Deficiency in Perovskites and Its Relation to the Electrochemical Performance , 2012, Advanced materials.

[35]  Tai-Nan Lin,et al.  Fabrication and evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the composite cathode of La0.8Sr0.2MnO3−δ–Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3−δ , 2010 .

[36]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[37]  Lucun Guo,et al.  Electrical conductivity, thermal expansion and electrochemical properties of Fe-doped La0.7Sr0.3CuO3−δ cathodes for solid oxide fuel cells , 2009 .

[38]  Junjiang Zhu,et al.  Study of La2−xSrxCuO4 (x = 0.0, 0.5, 1.0) catalysts for NO + CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry , 2005 .

[39]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[40]  H. Inaba,et al.  Thermal expansion of Gd-doped ceria and reduced ceria , 2000 .

[41]  San Ping Jiang,et al.  The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment , 1999 .

[42]  C. Ftikos,et al.  Characterization of Nd1-xSrxMnO3±δ SOFC cathode materials , 1999 .

[43]  G. Kostogloudis Structural, thermal and electrical properties of Pr0.5Sr0.5Co1−yNiyO3−δ perovskite-type oxides , 1998 .

[44]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[45]  M. M. Nasrallah,et al.  Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .

[46]  A. Ruffa Thermal expansion in insulating materials , 1980 .

[47]  J. Pang,et al.  Structure, synthesis, properties and solid oxide electrolysis cells application of Ba(Ce, Zr)O3 based proton conducting materials , 2022, Chemical Engineering Journal.

[48]  Zhihong Du,et al.  Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell , 2021 .

[49]  Horst Hahn,et al.  High-entropy energy materials: challenges and new opportunities , 2021, Energy & Environmental Science.

[50]  Min Hwan Lee,et al.  Effect of Surface-Specific Treatment by Infiltration into LaNi6Fe4O3- δ Cathodic Backbone for Solid Oxide Fuel Cells , 2019, Journal of The Electrochemical Society.

[51]  Yue Zhang,et al.  X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells , 2009 .

[52]  A. K. Tyagi,et al.  Solubility of Ce4+ and Sr2+ in the pyrochlore lattice of Gd2Zr2O7 for simulation of Pu and alkaline earth metal , 2006 .

[53]  Y. Takeda,et al.  Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells , 1987 .