Electromechanical tuning of nanoscale MIM diodes by nanoindentation

Nanoscale metal–insulator–metal (MIM) diodes consisting of a nanoscale-thickness insulator layer sandwiched between two dissimilar metal layers offer the potential for very high frequency alternating current to direct current signal rectification. Active nanoscale tuning of electronic tunneling through the insulator layer to form point contact diodes has previously been limited to barriers composed of soft organic films due to the force limitations of conductive-atomic force microscopy. In this paper, MIM diodes with oxide-based insulators are formed in situ with sub-nanometer depth precision and characterized using a nanoindenter equipped with electrical testing capabilities. Simultaneous measurement of both electrical and nano-mechanical information is accomplished in an MIM stack of the form Nb/Nb 2 O 5 /boron-doped diamond nanoindenter tip. Using this technique, we show that the diode behavior can be electromechanically tuned over a range of more than 1 V at equivalent currents via small changes in indentation depth and the results can be modeled using a Fowler–Nordheim approximation.

[1]  Richard M. Osgood,et al.  Nanoantenna-coupled MIM nanodiodes for efficient vis/nir energy conversion , 2007, SPIE Optics + Photonics for Sustainable Energy.

[2]  Terrance P. O'Regan,et al.  Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode , 2011 .

[3]  D. K. Kotter,et al.  Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors , 2010 .

[4]  Robert Stratton,et al.  Volt-current characteristics for tunneling through insulating films , 1962 .

[5]  D. Morgan,et al.  Electronic conduction in Nb/Nb2O5/In structures and the effect of space‐charge overlap , 1985 .

[6]  T. E. Hartman Tunneling Through Asymmetric Barriers , 1964 .

[7]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[8]  V. J. Kapoor,et al.  Submicron nickel‐oxide‐gold tunnel diode detectors for rectennas , 1989 .

[9]  C. Frisbie,et al.  Transition from direct tunneling to field emission in metal-molecule-metal junctions. , 2006, Physical review letters.

[10]  B. Ebersberger,et al.  Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2 , 1998 .

[11]  S. K. Masalmeh,et al.  Mixing and rectification properties of MIM diodes , 1996 .

[12]  Kazuhiko Matsumoto,et al.  Nb/Nb Oxide-Based Planar-Type Metal/Insulator/Metal (MIM) Diodes Fabricated by Atomic Force Microscope (AFM) Nano-Oxidation Process , 1997 .

[13]  Joost J. Vlassak,et al.  Indentation plastic displacement field: Part II. The case of hard films on soft substrates , 1999 .

[14]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.

[15]  Wolfgang Porod,et al.  High-yield transfer printing of metal-insulator-metal nanodiodes. , 2012, ACS nano.

[16]  J. Halbritter,et al.  On the natural Nb2O5 growth on Nb at room temperature , 1984 .

[17]  James Williams,et al.  An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon , 2007 .

[18]  C. Frisbie,et al.  Point contact current–voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy , 2000 .

[19]  Mads Brandbyge,et al.  Current-voltage relation for thin tunnel barriers: Parabolic barrier model , 2004 .

[20]  F. Lévy,et al.  Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors , 1996 .

[21]  W. Brinkman,et al.  Tunneling Conductance of Asymmetrical Barriers , 1970 .

[22]  R. Cook,et al.  Mechanical and electrical coupling at metal-insulator-metal nanoscale contacts , 2008 .

[23]  Prakash Periasamy,et al.  Metal-insulator-metal point-contact diodes as a rectifier for rectenna , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[24]  K. Siemsen,et al.  Point-contact diodes , 1984 .

[25]  M. Lockrey,et al.  Structural characterization of B-doped diamond nanoindentation tips , 2011 .

[26]  John G. Simmons,et al.  Low‐Voltage Current‐Voltage Relationship of Tunnel Junctions , 1963 .

[27]  Arnan Mitchell,et al.  Nanoscale Characterization of Energy Generation from Piezoelectric Thin Films , 2011 .

[28]  Wolfgang Porod,et al.  Nanoantenna Infrared Detectors , 2010, MTT 2010.

[29]  John G. Simmons,et al.  Potential Barriers and Emission‐Limited Current Flow Between Closely Spaced Parallel Metal Electrodes , 1964 .

[30]  M. Dagenais,et al.  A Focused Asymmetric Metal–Insulator–Metal Tunneling Diode: Fabrication, DC Characteristics and RF Rectification Analysis , 2011, IEEE Transactions on Electron Devices.

[31]  J. Simmons Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film , 1963 .

[32]  G. Moddel,et al.  Traveling-Wave Metal/Insulator/Metal Diodes for Improved Infrared Bandwidth and Efficiency of Antenna-Coupled Rectifiers , 2010, IEEE Transactions on Nanotechnology.

[33]  Erich N. Grossman,et al.  Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes , 2002 .

[34]  Prakash Periasamy,et al.  Fabrication and Characterization of MIM Diodes Based on Nb/Nb2O5 Via a Rapid Screening Technique , 2011, Advanced materials.

[35]  Prakash Periasamy,et al.  Metal-insulator-metal diodes: role of the insulator layer on the rectification performance. , 2013, Advanced materials.