Global surface wave inversion with model constraints ‡

Practical applications of surface wave inversion demand reliable inverted shear‐wave profiles and a rigorous assessment of the uncertainty associated to the inverted parameters. As a matter of fact, the surface wave inverse problem is severely affected by solution non‐uniqueness: the degree of non‐uniqueness is closely related to the complexity of the observed dispersion pattern and to the experimental inaccuracies in dispersion measurements. Moreover, inversion pitfalls may be connected to specific problems such as inadequate model parametrization and incorrect identification of the surface wave modes. Consequently, it is essential to tune the inversion problem to the specific dataset under examination to avoid unnecessary computations and possible misinterpretations.

[1]  Michele Cercato,et al.  Geophysical Investigation for the Rehabilitation of a Flood Control Embankment , 2009 .

[2]  E. Cardarelli,et al.  Shear-wave velocity profiling at sites with high stiffness contrasts: a comparison between invasive and non-invasive methods , 2010 .

[3]  Michele Cercato,et al.  Addressing non‐uniqueness in linearized multichannel surface wave inversion , 2009 .

[4]  Multi-mode Inversion for P-wave Velocity and Thick Near-surface Layers , 2008 .

[5]  L. Socco,et al.  A New Approach for Multimodal Inversion of Rayleigh and Scholte Waves , 2008 .

[6]  Yinhe Luo,et al.  Inversion stability analysis of multimode Rayleigh‐wave dispersion curves using low‐velocity‐layer models , 2008 .

[7]  Donghong Pei,et al.  Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves , 2007 .

[8]  M. Cercato Computation of partial derivatives of Rayleigh-wave phase velocity using second-order subdeterminants , 2007 .

[9]  Jianghai Xia,et al.  Generating an Image of Dispersive Energy by Frequency Decomposition and Slant Stacking , 2007 .

[10]  Michele Pipan,et al.  Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation , 2007 .

[11]  B. Luke,et al.  Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions , 2007 .

[12]  Jianghai Xia,et al.  Multichannel analysis of surface waves (MASW)—active and passive methods , 2007 .

[13]  Nils Ryden,et al.  Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra , 2006 .

[14]  Mrinal K. Sen,et al.  Enforcing smoothness and assessing uncertainty in non‐linear one‐dimensional prestack seismic inversion , 2006 .

[15]  Richard D. Miller,et al.  Multichannel Analysis of Passive Surface Waves – Modeling and Processing Schemes , 2005 .

[16]  Hiroaki Yamanaka,et al.  Comparison of Performance of Heuristic Search Methods for Phase Velocity Inversion in Shallow Surface Wave Method , 2005 .

[17]  Sebastiano Foti,et al.  Propagation of Data Uncertainty in Surface Wave Inversion , 2005 .

[18]  Laura Socco,et al.  Surface-wave method for near-surface characterization: a tutorial , 2004 .

[19]  Matthias Ohrnberger,et al.  Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements , 2004 .

[20]  Mrinal K. Sen,et al.  Use of VFSA for resolution, sensitivity and uncertainty analysis in 1D DC resistivity and IP inversion , 2003 .

[21]  Thomas Forbriger,et al.  Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms , 2003 .

[22]  Ron List,et al.  Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications , 2003 .

[23]  H. Okada The Microtremor Survey Method , 2003 .

[24]  D. Schmitt,et al.  Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure , 2002 .

[25]  William H. Press,et al.  Numerical recipes in C , 2002 .

[26]  J. Canas,et al.  Inversion of Rayleigh wave phase and group velocities by simulated annealing , 2000 .

[27]  Jianghai Xia,et al.  Estimation of near‐surface shear‐wave velocity by inversion of Rayleigh waves , 1999 .

[28]  Carlo G. Lai,et al.  Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near-Surface Site Characterization , 1998 .

[29]  Robert B. Smith,et al.  Surface Wave Inversion by Neural Networks (Radial Basis Functions) for Engineering Applications , 1997 .

[30]  Hiroaki Yamanaka,et al.  Application of genetic algorithms to an inversion of surface-wave dispersion data , 1996, Bulletin of the Seismological Society of America.

[31]  Mrinal K. Sen,et al.  Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion , 1996 .

[32]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[33]  R. Parker Geophysical Inverse Theory , 1994 .

[34]  K. Tokimatsu,et al.  EFFECTS OF MULTIPLE MODES ON RAYLEIGH WAVE DISPERSION CHARACTERISTICS. AUTHORS' CLOSURE , 1994 .

[35]  Kohji Tokimatsu,et al.  Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics , 1992 .

[36]  L. Ingber Very fast simulated re-annealing , 1989 .

[37]  M. Dobróka On the Absorption-Dispersion Characteristics of Channel Waves Propagating in Coal Seams of Varying THICKNESS1 , 1988 .

[38]  G. Mueller,et al.  The reflectivity method; a tutorial , 1985 .

[39]  Robert B. Herrmann,et al.  A numerical study of P-, SV-, and SH-wave generation in a plane layered medium , 1980 .

[40]  J. W. Dunkin,et al.  Computation of modal solutions in layered, elastic media at high frequencies , 1965 .