The impact of dust storms on the Arabian Peninsula and the Red Sea

Abstract. Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

[1]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[2]  K. Liou,et al.  Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model , 2013 .

[3]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[4]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[5]  Larry W. Thomason,et al.  Radiative forcing from the 1991 Mount Pinatubo volcanic eruption , 1998 .

[6]  R. Arimoto Concentrations, sources and air-sea exchange of trace elements in the atmosphere over the Pacific Ocean , 1989 .

[7]  Lance M. Leslie,et al.  Northeast Asian dust storms: Real‐time numerical prediction and validation , 2003 .

[8]  U. R. Rao,et al.  Atmospheric warming due to dust absorption over Afro‐Asian regions , 2007 .

[9]  E. Ganor,et al.  Transport of Saharan dust across the eastern Mediterranean , 1982 .

[10]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation , 2001 .

[11]  D. Fryrear Long-term effect of erosion and cropping on soil productivity , 1981 .

[12]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[13]  Nick Middleton,et al.  A geography of dust storms in South‐West Asia , 1986 .

[14]  Jean-Pierre Chaboureau,et al.  Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model , 2007 .

[15]  A. da Silva,et al.  Quantification of dust-forced heating of the lower troposphere , 1998, Nature.

[16]  D. Bader,et al.  Dynamical Model Simulation of the Morning Boundary Layer Development in Deep Mountain Valleys , 1983 .

[17]  N. Middleton,et al.  SEVERE DUST STORM AT KARACHI, 31 MAY 1986 , 1988 .

[18]  Nick Middleton,et al.  Dust storms in the Middle East , 1986 .

[19]  M. Garstang,et al.  Temporal and spatial characteristics of Saharan dust outbreaks , 1996 .

[20]  P. Formenti,et al.  Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum , 2003 .

[21]  C. Whiteman,et al.  Breakup of Temperature Inversions in Deep Mountain Valleys: Part II. Thermodynamic Model , 1982 .

[22]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[23]  John Leys,et al.  Numerical simulation of the October 2002 dust event in Australia , 2007 .

[24]  W. Stockwell,et al.  The second generation regional acid deposition model chemical mechanism for regional air quality modeling , 1990 .

[25]  Toby N. Carlson,et al.  A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms , 1987 .

[26]  Albert Ansmann,et al.  Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned? , 2011 .

[27]  A. Ansmann,et al.  Regional Saharan dust modelling during the SAMUM 2006 campaign , 2009 .

[28]  Stanley G. Benjamin,et al.  Radiative Heating Rates for Saharan Dust , 1980 .

[29]  S. Nicholson,et al.  The diurnal and seasonal cycles of wind-borne dust over Africa North of the Equator , 1997 .

[30]  P. Buseck,et al.  Airborne minerals and related aerosol particles: effects on climate and the environment. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Zifa Wang,et al.  Meteorological Characteristics and Dust Distribution of the Tarim Basin Simulated by the Nesting RAMS/CFORS Dust Model , 2005 .

[32]  Jean-Pierre Blanchet,et al.  A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation , 2006 .

[33]  Y. Shao Physics and Modelling of Wind Erosion , 2001 .

[34]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .

[35]  T. Littmann Dust storm frequency in Asia: Climatic control and variability , 2007 .

[36]  Weihong Qian,et al.  Variations of the Dust Storm in China and its Climatic Control , 2002 .

[37]  Nick Middleton,et al.  Desert Dust in the Global System , 2006 .

[38]  J. Perlwitz,et al.  Surface radiative forcing by soil dust aerosols and the hydrologic cycle , 2004 .

[39]  A. Watson,et al.  Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 , 2000, Nature.

[40]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[41]  Effects of tropospheric aerosols on the solar radiative heating in a clear atmosphere , 1990 .

[42]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[43]  B. Weinzierl,et al.  A model study of Saharan dust emissions and distributions during the SAMUM-1 campaign , 2010 .

[44]  Yaping Shao,et al.  Climatology of the Middle East dust events , 2013 .

[45]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[46]  M. Gamo,et al.  Thickness of the dry convection and large-scale subsidence above deserts , 1996 .

[47]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[48]  T. Takemura,et al.  Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea , 2006 .

[49]  Patrick Minnis,et al.  Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints , 2009 .

[50]  Kerstin Schepanski,et al.  Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization , 2008 .

[51]  Zong-ci Zhao,et al.  Climate change 2001, the scientific basis, chap. 8: model evaluation. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change IPCC , 2001 .

[52]  Jacques Pelon,et al.  Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa , 2010 .

[53]  Haim Kutiel Hadar Furman Dust Storms in the Middle East: Sources of Origin and Their Temporal Characteristics , 2003 .

[54]  K. Hanson,et al.  Spatial and temporal variability of dust production caused by wind erosion in the United States , 1989 .

[55]  Steven A. Ackerman,et al.  Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere , 1992 .

[56]  M. Memmesheimer,et al.  Modal aerosol dynamics model for Europe: development and first applications , 1998 .

[57]  Jimy Dudhia,et al.  The Weather Research and Forecast Model: software architecture and performance [presentation] , 2005 .

[58]  W. Guo,et al.  A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model , 2013 .

[59]  Rachel T. Pinker,et al.  Aerosol radiative forcing during dust events over New Delhi, India , 2008 .

[60]  P. Chylek,et al.  Effect of absorbing aerosols on global radiation budget , 1995 .

[61]  Jonathan P. Taylor,et al.  Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data , 2001 .

[62]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[63]  Robert Frouin,et al.  Asian Dust Events of April 1998 , 2001 .

[64]  E. Fadda,et al.  Trajectory analysis of Saudi Arabian dust storms , 2013 .

[65]  F. Kimura,et al.  Daytime Boundary Layer Evolution in a Deep Valley. Part I: Observations in the Ina Valley , 1995 .

[66]  J. Penner,et al.  Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust , 2001 .

[67]  T. N. Krishnamurti,et al.  Impact of Shortwave Radiative Effects of Dust Aerosols on the Summer Season Heat Low over Saudi Arabia , 1998 .

[68]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[69]  R. Washington,et al.  Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations , 2003 .

[70]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[71]  O. Boucher,et al.  Uncertainties in assessing radiative forcing by mineral dust , 1998 .

[72]  J. Heintzenberg The SAMUM-1 experiment over Southern Morocco: overview and introduction , 2009 .

[73]  Yaping Shao,et al.  Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications , 2001, Environ. Model. Softw..

[74]  S. Woodward,et al.  Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model , 2001 .

[75]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[76]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[77]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[78]  J. Perlwitz,et al.  Feedback upon dust emission by dust radiative forcing through the planetary boundary layer , 2004 .

[79]  S. Piketh,et al.  An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf , 2008 .

[80]  K. Pye Aeolian dust and dust deposits , 1987 .

[81]  J. Seinfeld,et al.  Radiative forcing by mineral dust aerosols : sensitivity to key variables , 1998 .

[82]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[83]  I. J. Ackermann,et al.  Modeling the formation of secondary organic aerosol within a comprehensive air quality model system , 2001 .

[84]  Sundar A. Christopher,et al.  Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra , 2003 .

[85]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[86]  Y. Kuo,et al.  The Effect of Dust Radiative Heating on Low-Level Frontogenesis , 1995 .

[87]  Veerabhadran Ramanathan,et al.  Dust plumes over the Pacific, Indian, and Atlantic oceans: Climatology and radiative impact , 2007 .

[88]  Wei Li,et al.  Radiative feedback of dust aerosols on the East Asian dust storms , 2010 .

[89]  Pinhas Alpert,et al.  Climatology of Dust Sources in North Africa and the Arabian Peninsula, Based on TOMS Data , 2004 .

[90]  T. Koch,et al.  Impact of the 1998 Gobi dust event on hospital admissions in the Lower Fraser Valley, British Columbia. , 2006, The Science of the total environment.

[91]  Richard Washington,et al.  North African dust emissions and transport , 2006 .

[92]  N. P. Woodruff,et al.  Air pollution from duststorms in the great plains , 1973 .

[93]  J. Prospero,et al.  Deposition rate of particulate and dissolved aluminum derived from saharan dust in precipitation at Miami, Florida , 1987 .

[94]  B. Bonnel,et al.  Thermal Impact of Saharan Dust over Land. Part I: Simnulation , 1992 .

[95]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[96]  Oliver Wild,et al.  Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models , 2000 .

[97]  E. Mediterranean Study on an intense dust storm over Greece , 2008 .

[98]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[99]  G. Stenchikov,et al.  Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea , 2012 .

[100]  Kerstin Schepanski,et al.  Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations , 2012 .

[101]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[102]  J. Prospero Saharan Dust Transport Over the North Atlantic Ocean and Mediterranean: An Overview , 1996 .

[103]  Donny M. A. Aminou,et al.  Characteristics of the Meteosat Second Generation (MSG) radiometer/imager: SEVIRI , 1997, Remote Sensing.

[104]  Nadhir Al-Ansari,et al.  Sand and dust storm events in Iraq , 2013 .

[105]  T. Warner,et al.  Multiscale Local Forcing of the Arabian Desert Daytime Boundary Layer, and Implications for the Dispersion of Surface-Released Contaminants , 2000 .

[106]  R. Hubbard,et al.  The impact of airborne dust on respiratory health in children living in the Aral Sea region. , 2007, International journal of epidemiology.

[107]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[108]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[109]  Yong-Seung Chung,et al.  On the occurrence of yellow sand and atmospheric loadings , 1996 .

[110]  E. Jáuregui The dust storms of Mexico City , 1989 .

[111]  J. Prospero,et al.  Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados , 1997 .

[112]  D. I. Sebacher,et al.  Distribution and geochemistry of aerosols in the tropical north Atlantic troposphere: Relationship to Saharan dust , 1986 .

[113]  W. G. Collins,et al.  Dust and pollution transport on global scales: Aerosol measurements and model predictions , 2001 .

[114]  Nobuo Sugimoto,et al.  Trans‐Pacific yellow sand transport observed in April 1998: A numerical simulation , 2001 .

[115]  Qiu Xin,et al.  Temporal-spatial Distribution as well as Tracks and Source Areas of Sand-Dust Storms in China , 2001 .

[116]  Jean-Claude Roger,et al.  One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing , 2008 .

[117]  Olivier Boucher,et al.  Aerosol absorption and radiative forcing , 2006 .

[118]  Sandy P. Harrison,et al.  The role of dust in climate changes today, at the last glacial maximum and in the future , 2001 .

[119]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[120]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[121]  R. Somerville,et al.  Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model , 2007 .

[122]  I. Sokolik,et al.  Investigation of optical and radiative properties of atmospheric dust aerosols , 1993 .

[123]  Effect of clouds on direct aerosol radiative forcing of climate , 1998 .

[124]  W. Sunda,et al.  Interrelated influence of iron, light and cell size on marine phytoplankton growth , 1997, Nature.

[125]  S. Fan,et al.  Aeolian input of bioavailable iron to the ocean , 2006 .

[126]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[127]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[128]  S. Ackerman Remote sensing aerosols using satellite infrared observations , 1997 .

[129]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[130]  Y. Balkanski,et al.  Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data , 2006 .

[131]  F. Giorgi,et al.  Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model , 2009 .

[132]  A L Andrady,et al.  Effects of increased solar ultraviolet radiation on materials. , 1998, Journal of photochemistry and photobiology. B, Biology.

[133]  Juan Cuesta,et al.  Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer , 2009 .

[134]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[135]  Nicolas Clerbaux,et al.  Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003 , 2005 .

[136]  P. Quinn,et al.  Clear‐sky infrared aerosol radiative forcing at the surface and the top of the atmosphere , 2003 .

[137]  M. Kavianpour,et al.  Synoptic analysis of dust storms in the Middle East , 2013, Asia-Pacific Journal of Atmospheric Sciences.

[138]  P. Alpert,et al.  Investigation of the Temporal and Spatial Variations of PBL Height Over Israel , 1992 .

[139]  M. Wendisch,et al.  Regional modelling of Saharan dust and biomass-burning smoke , 2011 .

[140]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[141]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[142]  M. Todd,et al.  Model Simulations of Complex Dust Emissions over the Sahara during the West African Monsoon Onset , 2012 .

[143]  Youfei Zheng,et al.  Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors , 2011, Atmospheric Environment.

[144]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[145]  F. Kimura,et al.  Horizontal Heat Fluxes over Complex Terrain Computed Using a Simple Mixed-Layer Model and a Numerical Model , 1995 .

[146]  Paul Ginoux,et al.  Case study of a Chinese dust plume reaching the French Alps , 2003 .

[147]  M. Wendisch,et al.  Effect of measured surface albedo on modeled Saharan dust solar radiative forcing , 2010 .

[148]  Regional modelling of Saharan dust and biomass-burning smoke Part 2: Direct radiative forcing and atmospheric dynamic response , 2011 .

[149]  Irina N. Sokolik,et al.  Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths , 1998 .

[150]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[151]  Joshua P. Hacker,et al.  Long‐range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada , 2001 .

[152]  R. Somerville,et al.  Sensitivity of climate forcing and response to dust optical properties in an idealized model , 2007 .

[153]  C. D. Whiteman,et al.  Breakup of Temperature Inversions in Deep Mountain Valleys: Part I. Observations. , 1982 .

[154]  V. Ramanathan,et al.  Chemical, microphysical, and radiative effects of Indian Ocean aerosols , 2002 .

[155]  M. Andreae Chapter 10 – Climatic effects of changing atmospheric aerosol levels , 1995 .

[156]  Soon-Chang Yoon,et al.  Dust cycle: An emerging core theme in Earth system science , 2011 .

[157]  M. Andreae Raising dust in the greenhouse , 1996, Nature.

[158]  V. M. Karyampudi,et al.  Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances , 1988 .

[159]  Xu Yue,et al.  Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions , 2010 .

[160]  V. Ramanathan,et al.  Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-F , 1998 .

[161]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[162]  Sally A. McFarlane,et al.  The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments , 2010 .

[163]  Robert Frouin,et al.  April 1998 Asian dust event: A southern California perspective , 2001 .

[164]  S. K. Satheesh,et al.  Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface , 2000, Nature.

[165]  Soon-Ung Park,et al.  Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period , 2007 .

[166]  Toby N. Carlson,et al.  A case study of mobilization and transport of Saharan dust , 1988 .

[167]  G. Gutman,et al.  Dust Intrusion Events into the Mediterranean Basin. , 1991 .

[168]  Masaru Chiba,et al.  A numerical study of the contributions of dust source regions to the global dust budget , 2006 .

[169]  N. Mahowald,et al.  Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database , 2008 .

[170]  J. Reid,et al.  Foreword to special section on the Puerto Rico Dust Experiment (PRIDE) , 2003 .

[171]  Mian Chin,et al.  Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation , 2004, Environ. Model. Softw..

[172]  E. Kassianov,et al.  Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger , 2009 .

[173]  F. Kimura,et al.  Daytime Boundary Layer Evolution in a Deep Valley. Part II: Numerical Simulation of the Cross-Valley Circulation , 1997 .

[174]  J. Perlwitz,et al.  Interactive Soil Dust Aerosol Model in the Giss Gcm, Part 1: Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols , 2013 .

[175]  John H. Seinfeld,et al.  Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model , 2004 .

[176]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[177]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .