Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials.

The present review article deals with recent novel studies on the preparation and application of polyrotaxanes comprised of cyclodextrins (CDs) and various linear polymers, especially poly(ethylene glycol) (PEG). First, a brief introduction of the historical background of the pioneering work on the preparation of an inclusion complex and polyrotaxane is provided. Subsequently, the authors have focused on the recently developed solvent systems for the polyrotaxane. These new solvents are interesting from two fundamental viewpoints: (1) from the perspective of the clarification of the hydrogen-bonding-based dissolution mechanism of polyrotaxanes; and (2) from the practical viewpoint of the preparation of modified polyrotaxanes or slide-ring gels containing ionic liquids. A wide variety of polyrotaxane derivatives, whose cyclodextrin moiety was modified to carry various functional groups, and their intriguing characteristics are introduced in this article. Finally, many instances of the application of the PEG-CD polyrotaxane to soft materials, such as gels, molecular tubes and multivalent ligand systems, are summarized.

[1]  A. Harada,et al.  Complex formation of poly(ε-caprolactone) with cyclodextrin , 1997 .

[2]  J. Fraser Stoddart,et al.  Inside Cover: A Molecular Solomon Link (Angew. Chem. Int. Ed. 1‐2/2007) , 2007 .

[3]  H. Choi,et al.  One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer. , 2006, Macromolecular bioscience.

[4]  M. Taddei,et al.  PEG-dichlorotriazine (PEG-DCT): A new soluble polymer-supported scavenger for alcohols, thiols, phosphines, and phosphine oxides , 2000, Organic letters.

[5]  A. Harada,et al.  Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin , 1993 .

[6]  K. Ito,et al.  Circular Dichroism Study of the Inclusion-Dissociation Behavior of Complexes between a Molecular Nanotube and Azobenzene Substituted Linear Polymers , 2002 .

[7]  Tomonori Akai,et al.  Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube , 2002 .

[8]  J. Araki,et al.  New solvent for polyrotaxane. I. Dimethylacetamide/lithium chloride (DMAc/LiCl) system for modification of polyrotaxane , 2006 .

[9]  Neil Winterton,et al.  Solubilization of polymers by ionic liquids , 2006 .

[10]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[11]  N. Yui,et al.  Supramolecular network formation through inclusion complexation of an α-cyclodextrin-based molecular tube , 2000 .

[12]  A. Maruyama,et al.  Effects of polyrotaxane structure on polyion complexation with DNA , 2004 .

[13]  C. Mijangos,et al.  Controlling PVA Hydrogels with γ-Cyclodextrin , 2004 .

[14]  J. Chevalier,et al.  Phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water, and cellulose , 1982 .

[15]  K. Ito,et al.  Nanostructures formed by combination of nanotube and polymer chain , 2003 .

[16]  A. Harada,et al.  Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between .beta.-cyclodextrin and .gamma.-cyclodextrin , 1993 .

[17]  Gottfried Schill,et al.  Rotaxan‐Verbindungen, I1) , 1969 .

[18]  Yong Chen,et al.  Polyrotaxane with Cyclodextrins as Stoppers and Its Assembly Behavior , 2005 .

[19]  A. Harada,et al.  Preparation and characterization of inclusion complexes of poly(dimethylsiloxane)s with cyclodextrins , 2001 .

[20]  Nobuhiko Yui,et al.  Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis , 1998 .

[21]  Young Ha Kim,et al.  Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane , 2000, Journal of biomaterials science. Polymer edition.

[22]  J. D. Albright,et al.  Dimethyl Sulfoxide-Acid Anhydride Mixtures. New Reagents for Oxidation of Alcohols1 , 1965 .

[23]  W. J. Alexander,et al.  Rapid Measurement of Cellulose Viscosity by Nitration Methods , 1949 .

[24]  K. Ito,et al.  Sol−Gel Transition of Hydrophobically Modified Polyrotaxane , 2006 .

[25]  M. Hara,et al.  Immobilization of molecular tubes on self-assembled monolayers of β-cyclodextrin and dodecanethiol inclusion complexes , 2004 .

[26]  T. Uyar,et al.  An intimate polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blend via coalescence from their common inclusion compound with γ‐cyclodextrin , 2004 .

[27]  K. Ito,et al.  HCl-doping of insulated molecular wire formed by emeraldine base polyaniline and molecular nanotube , 2003 .

[28]  T. Uyar,et al.  Intimate blending of binary polymer systems from their common cyclodextrin inclusion compounds , 2005 .

[29]  J. Araki,et al.  New solvent for polyrotaxane. III. Dissolution of a poly(ethylene glycol)/cyclodextrin polyrotaxane in a calcium thiocyanate aqueous solution or N-methylmorpholine-N-oxide monohydrate , 2007 .

[30]  P. Degée,et al.  Controlled synthesis of poly(ε-caprolactone)-grafted dextran copolymers as potential environmentally friendly surfactants , 2000 .

[31]  A. Harada,et al.  Preparation and characterization of polyrotaxanes containing many threaded .alpha.-cyclodextrins , 1993 .

[32]  M. Vignon,et al.  TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans , 2000 .

[33]  Herman van Bekkum,et al.  Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans , 1995 .

[34]  A. Tonelli,et al.  Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend , 2000 .

[35]  J. Ripmeester,et al.  Solid Polyrotaxanes of Polyethylene Glycol and Cyclodextrins: The Single Crystal X-ray Structure of PEG−β-cyclodextrin† , 2000 .

[36]  P. Baglioni,et al.  Molecular Dynamics of Novel a-Cyclodextrin Adducts Studied by 13 C-NMR Relaxation , 1997 .

[37]  N. Yui,et al.  Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of β-Cyclodextrins and Poly(ethylene glycol)−Poly(propylene glycol) Triblock Copolymer , 1999 .

[38]  J. Araki,et al.  New solvent for polyrotaxane. II. Dissolution behavior of polyrotaxane in ionic liquids and preparation of ionic liquid-containing slide-ring gels , 2006 .

[39]  G. Hadziioannou,et al.  Synthesis of Insulated Single-Chain Semiconducting Polymers Based on Polythiophene, Polyfluorene, and β-Cyclodextrin , 2004 .

[40]  M. Buděšínský,et al.  Synthesis of Per(5‐carboxy‐5‐dehydroxymethyl)‐α‐ and β‐Cyclodextrins −Self‐Assembly of the Per(2,3‐di‐O‐methyl)‐Protected Homologues into Highly Stable Dimers, Driven by Multiple Hydrogen Bonds , 2000 .

[41]  T. Endo,et al.  Relaxation and Reinforcing Effects of Polyrotaxane in an Epoxy Resin Matrix , 2006 .

[42]  S. Okabe,et al.  Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel , 2005 .

[43]  C. McCormick,et al.  THE LITHIUM CHLORIDE/DIMETHYLACETAMIDE SOLVENT FOR CELLULOSE: A LITERATURE REVIEW , 1990 .

[44]  S. Heike,et al.  Conductivity measurement of insulated molecular wire formed by molecular nanotube and polyaniline , 2005 .

[45]  G. Wenz,et al.  SPEED CONTROL FOR CYCLODEXTRIN RINGS ON POLYMER-CHAINS , 1994 .

[46]  G. Hadziioannou,et al.  Topological polymer networks with sliding cross-link points : The sliding gels . Relationship between their molecular structure and the viscoelastic as well as the swelling properties , 2007 .

[47]  A. Turbak Recent developments in cellulose solvent systems , 1984 .

[48]  T. Takata,et al.  Solid-State End-Capping of Pseudopolyrotaxane Possessing Hydroxy-Terminated Axle to Polyrotaxane and Its Application to the Synthesis of a Functionalized Polyrotaxane Capable of Yielding a Polyrotaxane Network , 2005 .

[49]  A. Harada,et al.  Preparation and Characterization of Inclusion Complexes of Poly(Propylene Glycol) with Cyclodextrins , 1995 .

[50]  K. Ito,et al.  Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol. , 2006, Chemical communications.

[51]  H. Gibson,et al.  Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .

[52]  Antje Potthast,et al.  Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: Studies on model compounds and pulps , 2005 .

[53]  H. Ogino Threading Molecular Strings onto Molecular Rings. Synthesis of Rotaxanes by Use of Cyclodextrins , 1994 .

[54]  G. Hadziioannou,et al.  From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The ‘sliding gels’ , 2005 .

[55]  H. V. Bekkum,et al.  The Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols , 1997 .

[56]  Hsin I Huang,et al.  Preparation and sorption activity of chitosan/cellulose blend beads , 2003 .

[57]  K. Ito,et al.  Manipulation of Insulated Molecular Wire with Atomic Force Microscope : Surfaces, Interfaces, and Films , 2001 .

[58]  B. Jeong,et al.  Polyrotaxane hexagonal microfiber , 2004 .

[59]  Takeshi Karino,et al.  SANS study on pulley effect of slide-ring gel , 2005 .

[60]  K. Ito,et al.  Insulation effect of an inclusion complex formed by polyaniline and ?-cyclodextrin in solution , 2000 .

[61]  A. Harada,et al.  Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins , 1996 .

[62]  Akira Harada,et al.  Complex formation between poly(ethylene glycol) and α-cyclodextrin , 1990 .

[63]  G. Freddi,et al.  Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. , 1999, International journal of biological macromolecules.

[64]  T. Nishi,et al.  Self-Assembling Dendritic Supramolecule of Molecular Nanotubes and Starpolymers , 2000 .

[65]  Akira Harada,et al.  Sol–Gel Transition during Inclusion Complex Formation between α-Cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution , 1994 .

[66]  T. Amagasa,et al.  Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration , 2005, Journal of biomaterials science. Polymer edition.

[67]  H. Choi,et al.  Block-Selective Movement of α-Cyclodextrins in Polyrotaxanes of PEI-b-PEG-b-PEI Copolymer , 2005 .

[68]  Akira Harada,et al.  Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol) , 1994, Nature.

[69]  A. Harada,et al.  Preparation and Characterization of Inclusion Complexes between Methylated Cyclodextrins and Poly(tetrahydrofuran) , 1999 .

[70]  N. Yui,et al.  Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. , 2003, Journal of the American Chemical Society.

[71]  J. Araki,et al.  Polyrotaxane derivatives. I. Preparation of modified polyrotaxanes with nonionic functional groups and their solubility in organic solvents , 2006 .

[72]  A. Ueno,et al.  Energy Transfer in a Rotaxane with a Naphthalene-modified α-Cyclodextrin Threaded by Dansyl-terminal Poly(ethylene glycol) , 1998 .

[73]  K. Ito,et al.  Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins. , 2006, The journal of physical chemistry. B.

[74]  H. Beckham,et al.  Chain Dynamics of Poly(oxyethylene) in Nanotubes of α-Cyclodextrin by Solid-State 2H NMR† , 2005 .

[75]  G. Wenz,et al.  Threading of cyclodextrins onto a polyester of octanedicarboxylic acid and polyethylene glycol , 1997 .

[76]  Ionel Ciucanu,et al.  A simple and rapid method for the permethylation of carbohydrates , 1984 .

[77]  S. Seki,et al.  Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. , 2005, The journal of physical chemistry. B.

[78]  A. Harada,et al.  Complex formation between cyclodextrin and poly(propylene glycol) , 1990 .

[79]  A. Tonelli,et al.  Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) triblock copolymer and α- and γ-cyclodextrin , 2000 .

[80]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[81]  W. Gray [12] Dansyl chloride procedure , 1967 .

[82]  S. Kuga New cellulose gel for chromatography , 1980 .

[83]  M. Tamura,et al.  A polyrotaxane series containing alpha-cyclodextrin and naphthalene-modified alpha-cyclodextrin as a light-harvesting antenna system. , 2001, Chemistry.

[84]  N. Yui,et al.  Thermally-Responsive Properties of a Polyrotaxane Consisting of β-Cyclodextrins and a Poly(ethylene glycol)-Poly(propylene glycol) Triblock-Copolymer , 1999 .

[85]  A. Ueno,et al.  Energy Transfer and Guest Responsive Fluorescence Spectra of Polyrotaxane Consisting of α-Cyclodextrins Bearing Naphthyl Moieties , 2000 .

[86]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[87]  Nobuhiko Yui,et al.  Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering. , 2003, Journal of biomedical materials research. Part A.

[88]  H. Beckham,et al.  Direct Synthesis of Cyclodextrin-Rotaxanated Poly(ethylene glycol)s and Their Self-Diffusion Behavior in Dilute Solution , 2003 .

[89]  S. Kuo,et al.  Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins , 2005 .

[90]  J. Watanabe,et al.  Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis. , 1999, Journal of biomaterials science. Polymer edition.

[91]  A. Harada,et al.  Complex formation of cyclodextrins with poly(propylene glycol) derivatives , 2000 .

[92]  Ai-ying Zhang,et al.  Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels , 2005 .

[93]  K. Leong,et al.  Inclusion complexation and formation of polypseudorotaxanes between poly[(ethylene oxide)-ran-(propylene oxide)] and cyclodextrins , 2001 .

[94]  M. Saito,et al.  Aqueous Calcium Thiocyanate Solution as a Cellulose Solvent. Structure and Interactions with Cellulose , 1998 .

[95]  T. Takata Polyrotaxane and Polyrotaxane Network: Supramolecular Architectures Based on the Concept of Dynamic Covalent Bond Chemistry , 2006 .

[96]  T. Takata,et al.  Polyrotaxanes and Polycatenanes: Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures , 2004 .

[97]  M. Hasegawa,et al.  Size-exclusion chromatography of cellulose and chitin using lithium chloride—N,N-dimethylacetamide as a mobile phase , 1993 .

[98]  A. Harada,et al.  Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Methylated Cyclodextrins , 1999 .

[99]  N. Jarroux,et al.  High conversion synthesis of pyrene end functionalized polyrotaxane based on poly(ethylene oxide) and alpha-cyclodextrins. , 2005, The journal of physical chemistry. B.

[100]  K. Ito,et al.  Slide-ring gel: Topological gel with freely movable cross-links , 2006 .

[101]  C. Poole Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. , 2004, Journal of chromatography. A.

[102]  A. Harada,et al.  Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins: New Pseudo-Polyrotaxanes Containing Inorganic Polymers , 2000 .

[103]  Young Ha Kim,et al.  Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials. , 2002, Journal of biomedical materials research.

[104]  N. Yui,et al.  Effect of biodegradable polyrotaxanes on platelet activation. , 1998, Bioconjugate chemistry.

[105]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[106]  A. Harada,et al.  Molecular Recognition: Preparation of Polyrotaxan and Tubular Polymer from Cyclodextrin , 1997 .

[107]  Hidemi Shigekawa,et al.  The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace , 2000 .

[108]  N. Yui,et al.  Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). , 2005, Bioconjugate chemistry.

[109]  N. Yui,et al.  Preparation of α-cyclodextrin-terminated polyrotaxane consisting of β-cyclodextrins and pluronic as a building block of a biodegradable network , 2005 .

[110]  A. Isogai,et al.  Preparation of Tri-O-alkylcellulose by the use of a nonaqueous cellulose solvent and their physical characteristics , 1986 .

[111]  A. Tonelli,et al.  Inclusion compounds formed between cyclodextrins and nylon 6 , 1999 .

[112]  J. Araki,et al.  A preliminary study for fiber spinning of mixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system , 2006 .

[113]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[114]  N. Yui,et al.  Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery , 1995 .

[115]  A. Harada,et al.  PREPARATION AND CHARACTERIZATION OF A POLYROTAXANE CONSISTING OF MONODISPERSE POLY(ETHYLENE GLYCOL) AND ALPHA -CYCLODEXTRINS , 1994 .

[116]  Kohzo Ito,et al.  Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, and Properties of Slide-Ring Gels with Freely Movable Junctions , 2007 .

[117]  K. Kurita,et al.  Preparation and evaluation of trimethylsilylated chitin as a versatile precursor for facile chemical modifications. , 2005, Biomacromolecules.

[118]  Nobuhiko Yui,et al.  Polymer Inclusion Complex Consisting of Poly(∊-lysine) and α-Cyclodextrin , 2001 .

[119]  L. F. Beste,et al.  Structure of Poly(1,4-benzamide) Solutions , 1977 .

[120]  H. V. Bekkum,et al.  TEMPO-Mediated Oxidation of Pullulan and Influence of Ionic Strength and Linear Charge Density on the Dimensions of the Obtained Polyelectrolyte Chains , 1996 .

[121]  T. Takata,et al.  A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. , 2004, Angewandte Chemie.

[122]  M. Saito,et al.  Structural Changes in Wood Pulp Treated by 55 wt% Aqueous Calcium Thiocyanate Solution , 1998 .

[123]  Y. Amemiya,et al.  Small-Angle X-ray Scattering Study of the Pulley Effect of Slide-Ring Gels , 2006 .

[124]  Akira Harada,et al.  Synthesis of a tubular polymer from threaded cyclodextrins , 1993, Nature.

[125]  Bao-hang Han,et al.  Cyclodextrin rotaxanes and polyrotaxanes. , 2006, Chemical reviews.

[126]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[127]  N. Yui,et al.  Bundling Two Polymeric Chains with γ-Cyclodextrin Cavity Contributing to Supramolecular Network Formation , 2007 .

[128]  T. Heinze,et al.  Synthesis and characterization of the novel cellulose derivative dansyl cellulose , 1996 .

[129]  A. Isogai,et al.  Preparation of tri-O-substituted cellulose ethers by the use of a nonaqueous cellulose solvent , 1984 .

[130]  G. Wenz,et al.  Threading Cyclodextrin Rings on Polymer Chains , 1992 .

[131]  A. Tonelli,et al.  Conformational Changes Induced in Bombyx mori Silk Fibroin by Cyclodextrin Inclusion Complexation , 2005 .

[132]  Nobuhiko Yui,et al.  Multivalent interactions between biotin-polyrotaxane conjugates and streptavidin as a model of new targeting for transporters. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[133]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers , 2009 .

[134]  G. Hadziioannou,et al.  Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded α-cyclodextrins. , 2005, Soft matter.

[135]  N. Yui,et al.  Inclusion complexation of fractionated ?-cyclodextrin molecular tube with sodium dodecyl sulfate , 2000 .

[136]  T. Takata,et al.  One-pot Synthesis of Main Chain-type Polyrotaxane Containing Cyclodextrin Wheels , 2007 .

[137]  A. Harada,et al.  Complex Formation of Polybutadiene with Cyclodextrins , 2001 .

[138]  K. Ito,et al.  SANS Studies on Deformation Mechanism of Slide-Ring Gel , 2005 .

[139]  T. Endo,et al.  A bulk mixture system of cyclodextrin and amine-terminated polyether : Observation of reversible thermoswitching behavior between fluid and gel-like states , 2006 .

[140]  N. Yui,et al.  Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. , 2006, Chemistry.

[141]  A. Tonelli,et al.  Reorganization of the structures, morphologies, and conformations of bulk polymers via coalescence from polymer–cyclodextrin inclusion compounds , 2002 .

[142]  J. Araki,et al.  Efficient Production of Polyrotaxanes fromalpha-Cyclodextrin and Poly(ethylene glycol) , 2005 .

[143]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[144]  A. Müller,et al.  Kinetics of Threading α-Cyclodextrin onto Cationic and Zwitterionic Poly(bola-amphiphiles) , 2006 .

[145]  J. Araki,et al.  Liquid-liquid equilibria of polyrotaxane and poly(vinyl alcohol). , 2007, Colloids and surfaces. B, Biointerfaces.

[146]  N. Yui,et al.  Enhanced accessibility of peptide substrate toward membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane. , 2001, Biomacromolecules.

[147]  M. Terbojevich,et al.  Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N,N-dimethylacetamide-lithium chloride , 1985 .

[148]  K. Ito,et al.  SANS studies on spatial inhomogeneities of slide-ring gels , 2004 .

[149]  T. Shimomura,et al.  Inclusion complex formation of cyclodextrin and polyaniline , 1999 .

[150]  Ian Thomas. Harrison,et al.  Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .

[151]  Ai-ying Zhang,et al.  Supramolecular structured hydrogel preparation based on self-assemblies of photocurable star-shaped macromers with α-cyclodextrins , 2005 .

[152]  N. Yui,et al.  Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition. , 2002, International journal of pharmaceutics.

[153]  Feihe Huang,et al.  Polypseudorotaxanes and polyrotaxanes , 2005 .

[154]  K. Sakurai,et al.  Polyrotaxane/DNA Conjugate by Use of Intercalation: Bridge Formation between DNA Double Helices , 2006 .

[155]  A. Tonelli,et al.  Unique morphological and thermal behaviors of reorganized poly(ethylene terephthalates) , 2004 .

[156]  A. Harada Preparation and structures of supramolecules between cyclodextrins and polymers , 1996 .

[157]  K. Leong,et al.  Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and α-Cyclodextrin , 2001 .

[158]  S. Granick,et al.  A multitude of macromolecules , 2004, Nature materials.

[159]  David J. Williams,et al.  Pseudorotaxanes Formed Between Secondary Dialkylammonium Salts and Crown Ethers , 1996 .

[160]  R. E. Boyle THE REACTION OF DIMETHYLSULFOXIDE AND 5-DIMETHYL AMINONAPHTHALENE-1- SULFONYL CHLORIDE , 1966 .

[161]  G. Wenz,et al.  Self organization of fluorescent molecular necklaces in aqueous solution , 1996 .

[162]  N. Yui,et al.  Temperature-controlled erosion of poly(N-isopropylacrylamide)-based hydrogels crosslinked by methacrylate-introduced hydrolyzable polyrotaxane , 2005 .

[163]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[164]  H. Anderson,et al.  Insulated molecular wires. , 2007, Angewandte Chemie.

[165]  G. Wenz Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units , 1994 .

[166]  H. Gibson,et al.  Polyrotaxanes: Molecular composites derived by physical linkage of cyclic and linear species , 1993 .