Modeling of Hysteresis in Single-Crystalline Barium Titanate with Allowance for Domain Structure Evolution

[1]  Alexander Humer,et al.  The polarization process of ferroelectric materials in the framework of variational inequalities , 2019, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[2]  A. Semenov Micromechanical Model of a Polycrystalline Ferroelectrelastic Material with Consideration of Defects , 2019, Journal of Applied Mechanics and Technical Physics.

[3]  A. Semenov,et al.  Finite-element modeling of ferroelectric material behavior at morphotropic phase boundaries between tetragonal, rhombohedric and orthorhombic phases , 2019, Journal of Physics: Conference Series.

[4]  A. Semenov,et al.  The Simulation of Rate-Dependent Behavior of Ferroelectroelastic Materials under Cyclic Loading , 2018, Technical Physics.

[5]  A. Bell,et al.  Lead-free piezoelectrics—The environmental and regulatory issues , 2018, MRS Bulletin.

[6]  G. Maugin The saga of internal variables of state in continuum thermo-mechanics (1893–2013) , 2015 .

[7]  Hiroshi Ishiwara,et al.  Ferroelectric random access memories. , 2012, Journal of nanoscience and nanotechnology.

[8]  H. Balke,et al.  Micromechanical modelling of remanent properties of morphotropic PZT , 2011 .

[9]  J. Huber,et al.  Classification of laminate domain patterns in ferroelectrics , 2011 .

[10]  A. Ngamjarurojana,et al.  Dynamic ferroelectric hysteresis scaling of BaTiO3 single crystals , 2009 .

[11]  R. McMeeking,et al.  Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading , 2008 .

[12]  Albrecht C. Liskowsky,et al.  On a vector potential formulation for 3D electromechanical finite element analysis , 2005 .

[13]  Albrecht C. Liskowsky,et al.  Finite Element Modeling of the Ferroelectroelastic Material Behavior in Consideration of Domain Wall Motions , 2005 .

[14]  David L. McDowell,et al.  Internal State Variable Theory , 2005 .

[15]  W. Kreher,et al.  Viscoplastic models for ferroelectric ceramics , 2005 .

[16]  Chad M. Landis,et al.  On the Strain Saturation Conditions for Polycrystalline Ferroelastic Materials , 2003 .

[17]  Chad M. Landis,et al.  A new finite‐element formulation for electromechanical boundary value problems , 2002 .

[18]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[19]  Chad M. Landis,et al.  New finite element formulation for electromechanics , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[21]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[22]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[23]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[24]  Yasuo Cho,et al.  Scanning nonlinear dielectric microscopy with nanometer resolution , 1999, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[25]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[26]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics , 1988 .

[27]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[28]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .