Drawing a Graph in a Hypercube

A $d$-dimensional hypercube drawing of a graph represents the vertices by distinct points in $\{0,1\}^d$, such that the line-segments representing the edges do not cross. We study lower and upper bounds on the minimum number of dimensions in hypercube drawing of a given graph. This parameter turns out to be related to Sidon sets and antimagic injections.

[1]  David Eppstein The lattice dimension of a graph , 2005, Eur. J. Comb..

[2]  B. Lindström Determination of two vectors from the sum , 1969 .

[3]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[4]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[5]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[6]  Îáá Íâåçîá Þ Ü Ý ¸ Èì Åçêáae Ü Ý,et al.  Layout of Graphs with Bounded Tree-Width , 2004 .

[7]  Béla Bollobás,et al.  Integer sets with prescribed pairwise differences being distinct , 2005, Eur. J. Comb..

[8]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[9]  K. O'Bryant A Complete Annotated Bibliography of Work Related to Sidon Sequences , 2004, math/0407117.

[10]  W. T. Tutte,et al.  ON THE DIMENSION OF A GRAPH , 1965 .

[11]  David R. Wood,et al.  On vertex-magic and edge-magic total injections of graphs , 2002, Australas. J Comb..

[12]  B. Lindström On B2-sequences of vectors , 1972 .

[13]  Prosenjit Bose,et al.  The Maximum Number of Edges in a Three-Dimensional Grid-Drawing , 2004, J. Graph Algorithms Appl..

[14]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[15]  Sriram Venkata Pemmarju Exploring the powers of stacks and queues via graph layouts , 1992 .

[16]  Gérard D. Cohen,et al.  Binary B2-Sequences : A New Upper Bound , 2001, J. Comb. Theory, Ser. A.

[17]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[18]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[19]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[20]  David R. Wood,et al.  Multi-dimensional Orthogonal Graph Drawing with Small Boxes , 1999, GD.

[21]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[22]  David R. Wood Three-Dimensional Orthogonal Graph Drawing , 2000 .

[23]  Britta Landgraf 3D Graph Drawing , 1999, Drawing Graphs.

[24]  Luis Boza,et al.  The dimension of a graph , 2007, Electron. Notes Discret. Math..

[25]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[26]  Deborah F. Swayne,et al.  Higher Dimensional Representations of Graphs , 1995 .

[27]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.