Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina.

[1]  K. O’Donnell,et al.  Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. , 2011, Fungal genetics and biology : FG & B.

[2]  M. L. Ramírez,et al.  Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. , 2011, International journal of food microbiology.

[3]  L. D. Ploper,et al.  Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. , 2011, International journal of food microbiology.

[4]  M. P. Azcarate,et al.  Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. , 2009, International journal of food microbiology.

[5]  D. Schmale,et al.  Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil , 2009 .

[6]  D. Geiser,et al.  An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. , 2008, Fungal genetics and biology : FG & B.

[7]  A. Ritieni,et al.  Natural occurrence of nivalenol and mycotoxigenic potential of Fusarium graminearum strains in wheat affected by head blight in Argentina , 2008, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[8]  A. Logrieco,et al.  Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. , 2006, FEMS microbiology letters.

[9]  John F. Leslie,et al.  The Fusarium laboratory manual. , 2006 .

[10]  J. Pestka,et al.  Deoxynivalenol: Toxicology and Potential Effects on Humans , 2005, Journal of toxicology and environmental health. Part B, Critical reviews.

[11]  Karl-Heinz Kogel,et al.  Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Ansari,et al.  Effects of trichothecene mycotoxins on eukaryotic cells: A review , 2005, Food additives and contaminants.

[13]  R. Schothorst,et al.  Report from SCOOP task 3.2.10 "collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states". Subtask: trichothecenes. , 2004, Toxicology letters.

[14]  P. Nicholson,et al.  Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis , 2003 .

[15]  R. Plattner,et al.  Diverse traits for pathogen fitness in Gibberella zeae , 2003 .

[16]  R. Proctor,et al.  Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. , 2002, Fungal genetics and biology : FG & B.

[17]  K. O’Donnell,et al.  Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Y. Han,et al.  Tri13 and Tri7 Determine Deoxynivalenol- and Nivalenol-Producing Chemotypes of Gibberella zeae , 2002, Applied and Environmental Microbiology.

[19]  Yin-Won Lee,et al.  Identification of Deoxynivalenol- and Nivalenol-Producing Chemotypes of Gibberella zeae by Using PCR , 2001, Applied and Environmental Microbiology.

[20]  S. Resnik,et al.  Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. , 1997, Food additives and contaminants.

[21]  A. Querol,et al.  Molecular Monitoring of Wine Fermentations Conducted by Active Dry Yeast Strains , 1992, Applied and environmental microbiology.

[22]  H. Godoy,et al.  Patterns of mycotoxin production by Fusarium gmminearum isolated from Argentine wheat , 1990, Mycopathologia.

[23]  Y. Ueno,et al.  Comparative toxicology of trichothec mycotoxins: inhibition of protein synthesis in animal cells. , 1973, Journal of biochemistry.

[24]  R. Proctor,et al.  Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. , 2011, Fungal biology.

[25]  M. Vattuone,et al.  A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. , 2010, Fungal biology.

[26]  F. Verstraete,et al.  European Union legislation on mycotoxins in food and feed: overview of the decision-making process and recent and future developments. , 2008 .

[27]  A. E. Desjardins Fusarium Mycotoxins: Chemistry, Genetics, And Biology , 2006 .

[28]  M. A. Jonker,et al.  Worldwide regulations for mycotoxins in food and feed in 2003 , 2004 .

[29]  R. Proctor,et al.  ROLE OF TOXINS IN PLANT MICROBIAL INTERACTIONS , 1998 .

[30]  A. Dalcero,et al.  Occurrence of deoxynivalenol and Fusarium graminearum in Argentinian wheat. , 1997, Food additives and contaminants.

[31]  A. Violante,et al.  Fusarium spp en trigo, capacidad toxicogenica y quimiotaxonomia de las cepas aisladas en la Argentina , 1992 .

[32]  J. Ryu,et al.  The acute and chronic toxicities of nivalenol in mice. , 1988, Fundamental and applied toxicology : official journal of the Society of Toxicology.