Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order - Phaeomoniellales.

Symbiotic fungi living in plants as endophytes, and in lichens as endolichenic fungi, cause no apparent symptoms to their hosts. They are ubiquitous, ecologically important, hyperdiverse, and represent a rich source of secondary compounds for new pharmaceutical and biocontrol products. Due in part to the lack of visible reproductive structures and other distinctive phenotypic traits for many species, the diversity and phylogenetic affiliations of these cryptic fungi are often poorly known. The goal of this study was to determine the phylogenetic placement of representative endophytes within the Eurotiomycetes (Pezizomycotina, Ascomycota), one of the most diverse and evolutionarily dynamic fungal classes, and to use that information to infer processes of macroevolution in trophic modes. Sequences of a single locus marker spanning the nuclear ribosomal internal transcribed spacer region (nrITS) and 600 base pairs at the 5' end of the nuclear ribosomal large subunit (nrLSU) were obtained from previous studies of >6000 endophytic and endolichenic fungi from diverse biogeographic locations and hosts. We conducted phylum-wide phylogenetic searches using this marker to determine which fungal strains belonged to Eurotiomycetes and the results were used as the basis for a class-wide, seven-locus phylogenetic study focusing on endophytic and endolichenic Eurotiomycetes. Our cumulative supermatrix-based analyses revealed that representative endophytes within Eurotiomycetes are distributed in three main clades: Eurotiales, Chaetothyriales and Phaeomoniellales ord. nov., a clade that had not yet been described formally. This new order, described herein, is sister to the clade including Verrucariales and Chaetothyriales. It appears to consist mainly of endophytes and plant pathogens. Morphological characters of endophytic Phaeomoniellales resemble those of the pathogenic genus Phaeomoniella. This study highlights the capacity of endophytic and endolichenic fungi to expand our understanding of the ecological modes associated with particular clades, and provides a first estimation of their phylogenetic relationships in the Eurotiomycetes.

[1]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[2]  David S. Hibbett,et al.  Fungal systematics: is a new age of enlightenment at hand? , 2013, Nature Reviews Microbiology.

[3]  Neil Moore,et al.  Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses , 2012, Nature Genetics.

[4]  D. Malvick,et al.  Fungal endophyte diversity in soybean , 2013, Journal of applied microbiology.

[5]  J. Dupont,et al.  Geographic locality greatly influences fungal endophyte communities in Cephalotaxus harringtonia. , 2013, Fungal biology.

[6]  F. Kauff,et al.  Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. , 2002, Molecular phylogenetics and evolution.

[7]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[8]  R. Henrik Nilsson,et al.  Improving ITS sequence data for identification of plant pathogenic fungi , 2014, Fungal Diversity.

[9]  Martin Grube,et al.  New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. , 2006, Mycologia.

[10]  Jolanta Miadlikowska,et al.  Host and geographic structure of endophytic and endolichenic fungi at a continental scale. , 2012, American journal of botany.

[11]  B. Nordén,et al.  New species of Moristroma (Ascomycetes) and phylogenetic position of the genus , 2005, Mycological Progress.

[12]  Peter M. Vitousek,et al.  Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape , 2012, Proceedings of the National Academy of Sciences.

[13]  P. Ramsey,et al.  Foliar nutrients shape fungal endophyte communities in Western white pine (Pinus monticola) with implications for white-tailed deer herbivory , 2012 .

[14]  G. B. Golding,et al.  Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? , 2011, The New phytologist.

[15]  M. Ernst,et al.  Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. , 2003, Molecular plant-microbe interactions : MPMI.

[16]  Y. L. Krishnamurthy,et al.  Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. , 2009, Microbiological research.

[17]  Dustin C. Sandberg,et al.  Fungal Endophytes of Aquatic Macrophytes: Diverse Host-Generalists Characterized by Tissue Preferences and Geographic Structure , 2014, Microbial Ecology.

[18]  A. George Flora of Australia , 1986 .

[19]  David M. Geiser,et al.  Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. , 2006, Mycologia.

[20]  T. S. SURYANARAYANANa,et al.  Fungal endophytes and bioprospecting , 2009 .

[21]  Joon-Hee Lee,et al.  Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress , 2011 .

[22]  P. Crous,et al.  Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees , 2010, Persoonia.

[23]  David Hewitt,et al.  A five-gene phylogeny of Pezizomycotina. , 2006, Mycologia.

[24]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[25]  A. Gargas,et al.  Polymerase Chain Reaction (PCR) Primers for Amplifying and Sequencing Nuclear 18S rDNA from Lichenized Fungi , 1992 .

[26]  A. Tehler,et al.  Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship , 2013, Cladistics : the international journal of the Willi Hennig Society.

[27]  Priscila Chaverri,et al.  Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences , 2011, Molecular ecology.

[28]  Holly M. Bik,et al.  PhyloSift: phylogenetic analysis of genomes and metagenomes , 2014, PeerJ.

[29]  C. Gueidan,et al.  Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. , 2011, Fungal biology.

[30]  A. Arnold,et al.  Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. , 2008, Mycological research.

[31]  P. Wagner,et al.  Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. , 2000, Systematic biology.

[32]  T. Burgess,et al.  Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework , 2013, Studies in mycology.

[33]  O. Petrini,et al.  AN ANALYSIS OF FUNGAL COMMUNITIES ISOLATED FROM FRUTICOSE LICHENS , 1990 .

[34]  F. Lutzoni,et al.  Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? , 2007, Ecology.

[35]  A. Stierle,et al.  Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. , 1993, Science.

[36]  F. Lutzoni,et al.  Phylogenetic Revision of the Genus Peltigera (Lichen‐Forming Ascomycota) Based on Morphological, Chemical, and Large Subunit Nuclear Ribosomal DNA Data , 2000, International Journal of Plant Sciences.

[37]  K. Hilu,et al.  Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. , 2013, American journal of botany.

[38]  T. Osono,et al.  Colonization and lignin decomposition of pine needle litter by Lophodermium pinastri , 2011 .

[39]  Michael Weiss,et al.  Towards a unified paradigm for sequence‐based identification of fungi , 2013, Molecular ecology.

[40]  S. Kroken,et al.  The Population Biology of Coccidioides , 2007, Annals of the New York Academy of Sciences.

[41]  K. Saikkonen,et al.  FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants , 1998 .

[42]  S. Zoller,et al.  Pcr Primers for the Amplification of Mitochondrial Small Subunit Ribosomal DNA of Lichen-forming Ascomycetes , 1999, The Lichenologist.

[43]  Jolanta Miadlikowska,et al.  A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? , 2009, Systematic biology.

[44]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[45]  C. Alabouvette,et al.  The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. , 2013, Molecular plant-microbe interactions : MPMI.

[46]  Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales) , 2012, Fungal Diversity.

[47]  S. Yousaf,et al.  Fungal Endophytic Communities in Grapevines (Vitis vinifera L.) Respond to Crop Management , 2012, Applied and Environmental Microbiology.

[48]  D. Tilman,et al.  Fungal endophytes limit pathogen damage in a tropical tree , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Rehner,et al.  Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences , 1994 .

[50]  Bart Buyck,et al.  What if esca disease of grapevine were not a fungal disease? , 2012, Fungal Diversity.

[51]  Katalin Molnár,et al.  A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. , 2014, Molecular phylogenetics and evolution.

[52]  D. Lindner,et al.  Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus , 2011, Mycologia.

[53]  G. Samuels,et al.  EVOLUTION OF HABITAT PREFERENCE AND NUTRITION MODE IN A COSMOPOLITAN FUNGAL GENUS WITH EVIDENCE OF INTERKINGDOM HOST JUMPS AND MAJOR SHIFTS IN ECOLOGY , 2013, Evolution; international journal of organic evolution.

[54]  S. E. López,et al.  Studies on xylophilous fungi from argentina iv. anamorphs of basidiomycetes on eucalyptus viminalis myrtaceae , 1989 .

[55]  Hsiao-Che Kuo,et al.  Secret lifestyles of Neurospora crassa , 2014, Scientific Reports.

[56]  M. Heil,et al.  Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? , 2013, Fungal Diversity.

[57]  A. Arnold,et al.  Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica , 2014, Mycologia.

[58]  Y. Zhang,et al.  Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation , 2009, Studies in mycology.

[59]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[60]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[61]  B D Hall,et al.  The origin of red algae: implications for plastid evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Shipunov,et al.  Hidden diversity of endophytic fungi in an invasive plant. , 2008, American journal of botany.

[63]  A. Arnold,et al.  Fungal endophyte diversity in coffee plants from Colombia, Hawai'i, Mexico and Puerto Rico , 2010 .

[64]  P. Crous,et al.  ITS and β-tubulin phylogeny of Phaeoacremonium and Phaeomoniella species , 2001 .

[65]  C. Schoch,et al.  Dolabra nepheliae on rambutan and lychee represents a novel lineage of phytopathogenic Eurotiomycetes , 2010, Mycoscience.

[66]  Harald Berger,et al.  Draft Genome Sequence of Phaeomoniella chlamydospora Strain RR-HG1, a Grapevine Trunk Disease (Esca)-Related Member of the Ascomycota , 2014, Genome Announcements.

[67]  R. Henrik Nilsson,et al.  Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi , 2014, Database J. Biol. Databases Curation.

[68]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[69]  M. Donoghue,et al.  An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants , 2010, Proceedings of the National Academy of Sciences.

[70]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[71]  R. Rodriguez,et al.  Stress tolerance in plants via habitat-adapted symbiosis , 2008, The ISME Journal.

[72]  P. Crous,et al.  Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca , 2000 .

[73]  U. Güldener,et al.  Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica , 2011, PLoS pathogens.

[74]  G. Rambold,et al.  Lichen-associated fungi of the Letharietum vulpinae , 2011, Mycological Progress.

[75]  M. Cox,et al.  What triggers grass endophytes to switch from mutualism to pathogenism? , 2011, Plant science : an international journal of experimental plant biology.

[76]  K. Réblová,et al.  Novel Evolutionary Lineages Revealed in the Chaetothyriales (Fungi) Based on Multigene Phylogenetic Analyses and Comparison of ITS Secondary Structure , 2013, PloS one.

[77]  Wouter Boomsma,et al.  Statistical assignment of DNA sequences using Bayesian phylogenetics. , 2008, Systematic biology.

[78]  Hyde,et al.  Colletotrichum : a catalogue of confusion , 2009 .

[79]  Ulf Arup,et al.  Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). , 2012, Molecular phylogenetics and evolution.

[80]  R. Lanfear,et al.  Selecting optimal partitioning schemes for phylogenomic datasets , 2014, BMC Evolutionary Biology.

[81]  Alexandros Stamatakis,et al.  Aligning short reads to reference alignments and trees , 2011, Bioinform..

[82]  T. Burgess,et al.  Fungal Planet description sheets: 69–91 , 2011, Persoonia.

[83]  A. King,et al.  Fungal Planet description sheets: 214–280 , 2014, Persoonia.

[84]  F. Kauff,et al.  Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). , 2007, Molecular Phylogenetics and Evolution.

[85]  A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota) , 2014, Mycological Progress.

[86]  P. Crous,et al.  Fungal Planet description sheets: 92–106 , 2011, Persoonia.

[87]  R. Gazis,et al.  Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. , 2012, Molecular phylogenetics and evolution.

[88]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[89]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[90]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[91]  R. Vishwakarma,et al.  Diversity, Molecular Phylogeny, and Bioactive Potential of Fungal Endophytes Associated with the Himalayan Blue Pine (Pinus wallichiana) , 2014, Microbial Ecology.

[92]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[93]  T. Hohl,et al.  Aspergillus fumigatus: Principles of Pathogenesis and Host Defense , 2007, Eukaryotic Cell.

[94]  P. Auvinen,et al.  Identifying wood-inhabiting fungi with 454 sequencing – what is the probability that BLAST gives the correct species? , 2010 .

[95]  J. Spatafora,et al.  Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes , 2007, Molecular ecology.

[96]  O. Petrini,et al.  Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines , 2003, Australasian Plant Pathology.

[97]  R. Gazis,et al.  Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru , 2010 .

[98]  J. Germida,et al.  Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second‐generation seed viability , 2014, Journal of applied microbiology.

[99]  H. Lee,et al.  Phaeomoniella zymoides and Phaeomoniella pinifoliorum spp. nov., new acid-tolerant epiphytic fungi isolated from pine needles in Korea. , 2006, Mycologia.

[100]  Rytas Vilgalys,et al.  Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR , 2007, Mycologia.

[101]  P. Kirk,et al.  Dictionary of the Fungi , 2008 .

[102]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[103]  J. Stone,et al.  12 – ENDOPHYTIC FUNGI , 2004 .

[104]  M. Rai,et al.  Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture , 2014, Symbiosis.

[105]  F. Lutzoni,et al.  Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. , 2007, Molecular phylogenetics and evolution.

[106]  A. Arnold,et al.  Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes , 2010, Applied and Environmental Microbiology.

[107]  P. Crous,et al.  Foliicolous microfungi occurring on Encephalartos , 2008, Persoonia.

[108]  Jolanta Miadlikowska,et al.  Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens , 2010, Microbial Ecology.

[109]  K. Kjer,et al.  Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. , 1995, Molecular phylogenetics and evolution.

[110]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[111]  C. Gueidan,et al.  A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages , 2008, Studies in mycology.

[112]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[113]  E. Virginia Armbrust,et al.  pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree , 2010, BMC Bioinformatics.

[114]  S. Lumyong,et al.  A Phylogenetic Evaluation of Whether Endophytes Become Saprotrophs at Host Senescence , 2007, Microbial Ecology.

[115]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[116]  G. Romanazzi,et al.  Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in Esca disease. , 2012, Phytopathology.

[117]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[118]  R. Sikora,et al.  Endophytes: An emerging tool for biological control , 2008 .

[119]  P. Johnston,et al.  Molecular phylogeny reveals a core clade of Rhytismatales , 2011, Mycologia.

[120]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[121]  S. Peterson,et al.  Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. , 2005, Mycologia.

[122]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[123]  D. J. Lodge,et al.  ENDOPHYTIC FUNGI OF MANILKARA BIDENTATA LEAVES IN PUERTO RICO , 1996 .

[124]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[125]  Ignazio Carbone,et al.  Tissue storage and primer selection influence pyrosequencing‐based inferences of diversity and community composition of endolichenic and endophytic fungi , 2014, Molecular ecology resources.

[126]  F. Lutzoni,et al.  Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. , 2004, Molecular phylogenetics and evolution.

[127]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[128]  Rachel E Gallery,et al.  Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. , 2009, Mycological research.

[129]  In-Jung Lee,et al.  Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress , 2012, Molecules.